Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)
\(=\left(5n+10\right)\left(n+4\right)⋮5\)
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
(n+7)2-(n-5)2
=[(n+7)+(n-5)][(n+7)-(n-5)]
=(n+7+n-5)(n+7-n+5)
=(2n+2).12
=2.(n+1).12
=24.(n+1)
Vậy với mọi số nguyên n thì: (n+7)2 _ (n-5)2 chia hết cho 24
(n+7)^2-(n-5)^2
=n^2+14n+7^2-n^2+10n-5^2
=24n+24
24(n+1) chia hết cho 24
B = n3(n2-7)^2-36n
= n3(n4-14n2+49)-36n
= n7 - 14n5 + 49n3 - 36n
= n(n6 - 14n4 +49n2 -36)
= n(n6 - n5 + n5 - n4 - 13n4 + 13n3 - 13n3 + 13n2 + 36n2 - 36n + 36n - 36)
= n[n5(n-1)+n4(n-1)-13n3(n-1)-13n2(n-1)+36n(n-1)+36(n-1)]
= n(n-1)(n5+n4-13n3-13n2+36n+36)
= n(n-1)[n4(n+1)-13n2(n+1)+36(n+1)]
= n(n-1)(n+1)(n4-13n2+36)
= n(n-1)(n+1)(n4-9n2-4n2+36)
= n(n-1)(n+1)[n2(n2-9)-4(n2-9)]
= n(n-1)(n+1)(n2-9)(n2-4)
= n(n-1)(n+1)(n-3)(n+3)(n-2)(n+2)
= (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Có \(B⋮3\); \(B⋮5\);\(B⋮7\)(vì có 7 số tự nhiên liên tiếp)
Mà 3; 5; 7 đôi một nguyên tố cùng nhau
\(\Rightarrow B⋮3.5.7\Rightarrow B⋮105\)(đpcm)
\(n^7-n=n\left(n^6-1\right)=n\left(n^2-1\right)\left(n^2+n+1\right)\left(n^2-n+1\right)\)
Nếu n = 7k ( k thuộc Z ) thì n chia hết cho 7
Nếu n = 7k + 1 ( k thuộc Z ) thì \(n^2-1=49k^2+14k⋮7\)
Nếu n = 7k + 2 ( k thuộc Z ) thì \(n^2+n+1=49k^2+35k+7⋮7\)
Nếu n = 7k + 3 ( k thuộc Z ) thì \(n^2-n+1=49k^2+35k+7⋮7̸\)
Trong trường hợp nào cũng có một thừa số chia hết cho 7
Nên \(n^7-n⋮7\)với mọi số nguyên