Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n=2k thì n+6=2k+6 chia hết cho 2
Nếu n=2k+1 thì n+3=2k+1+3=2k+4 chia hết cho 2
Suy ra (n+3)*(n+6) chia hết cho 2
Đã chứng minh đâu mà biết nó chia hết cho 2 mà viết là 2k
Nếu n là số lẻ=>n+3 là số chẵn=>(n+3)\(⋮\)2=>(n+3)x(n+6)\(⋮\)2
Nếu n là số chẵn => n+6 là số chẵn=>(n+6)\(⋮\)2=>(n+3)x(n+6)\(⋮\)2
Vậy mọi số tự nhiên n thì (n+3)x(n+6)\(⋮\)2
(n+3)(n+6)
= (n+3).n+(n+3).6
= n.n+3.n+n.6+18
Nếu n = lẻ thì n.n= lẻ và 3.n = lẻ nhưng lẻ + lẻ = chẵn => n.n+3.n là chẵn
Vì 6 và 18 là số chẵn => n.6+18 là chẵn.
Vậy n.n+3.n+n.6+18
Nếu n= chãn thì 3.n= chẵn
n.n= chẵn
n.6= chẵn
=> (n+3)(n+6) chia hết cho 2
TRong mọi trường hợp (n+3)(n+6) chia hết cho 2
Với \(n\)chẵn thì \(n+6\)là số chẵn suy ra \(\left(n+3\right)\left(n+6\right)⋮2\).
Với \(n\)lẻ thì \(n+3\)là số chẵn suy ra \(\left(n+3\right)\left(n+6\right)⋮2\).
- Nếu n ⋮ 2 thì n = 2k ( k ∈ N)
Suy ra : n + 6 = 2k + 6 = 2(k + 3)
Vì 2(k + 3) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
- Nếu n không chia hết cho 2 thì n = 2k + 1 (k ∈ N)
Suy ra: n + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2)
Vì 2(k + 2) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
Vậy (n + 3).(n+ 6) chia hết cho 2 với mọi số tự nhiên n.
n \(\in\) N* suy ra :
Trường hợp 1: n là số chẵn => n=2k. Ta có:
32k+3+32k+2+22k+3+22k+2 = 32.3k+3+32.3k+2+22.2k+2 = 3.(3+1+3+1)+3k+3k+2.(1+2+1)+2k
chia hết cho 6.
Trường hợp 2; b là số lẻ => n=2k+1. Ta có: (tương tự)
Với n là số tự nhiên
*Nếu n lẻ thì n+3 sẽ chẵn suy ra n+3 chia hết cho 2 suy ra (n+3)(n+6) chia hết cho 2
*Nếu n chẵn thì n+6 chẵn suy ra n+6 chia hết cho 2 suy ra (n+3)(n+6) chia hết cho 2
\(\Rightarrow\left(n+3\right)\left(n+6\right)\) chia hết cho 2 với mọi n là số tự nhiên
Bước 1: Chứng minh công thức đúng cho n = 1. Khi n = 1, ta có: 1² = 1 = 1 . (1 + 1) . (2 . 1 + 1) / 6 = 1. Vậy công thức đúng cho n = 1.
Bước 2: Giả sử công thức đúng cho n = k, tức là 1² + 2² + ... + k² = k . (k + 1) . (2k + 1) / 6. Ta cần chứng minh công thức đúng cho n = k + 1, tức là 1² + 2² + ... + k² + (k + 1)² = (k + 1) . (k + 1 + 1) . (2(k + 1) + 1) / 6.
Bước 3: Chứng minh công thức đúng cho n = k + 1. Ta có: 1² + 2² + ... + k² + (k + 1)² = (k . (k + 1) . (2k + 1) / 6) + (k + 1)² = (k . (k + 1) . (2k + 1) + 6(k + 1)²) / 6 = (k . (k + 1) . (2k + 1) + 6(k + 1) . (k + 1)) / 6 = (k + 1) . ((k . (2k + 1) + 6(k + 1)) / 6) = (k + 1) . ((2k² + k + 6k + 6) / 6) = (k + 1) . ((2k² + 7k + 6) / 6) = (k + 1) . ((k + 2) . (2k + 3) / 6) = (k + 1) . ((k + 1 + 1) . (2(k + 1) + 1) / 6).
Vậy, công thức đã được chứng minh đúng cho mọi số tự nhiên n khác 0.
++ Với nn là số chẵn
⇒n+6⇒n+6 là số chẵn
⇒(n+6)(n+3)⇒(n+6)(n+3) là số chẵn
⇒(n+6)(n+3)⋮2⇒(n+6)(n+3)⋮2
++ Với nn là số lẻ
⇒n+3⇒n+3 là số chẵn
⇒(n+6)(n+3)⇒(n+6)(n+3) là số chẵn
⇒(n+6)(n+3)⋮2⇒(n+6)(n+3)⋮2
Vậy (n+6)(n+3) chia hết cho 2 với mọi số tự nhiên n