K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath    dv

30 tháng 7 2018

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)

              \(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

              \(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

               \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5 

    5n(n - 1)(n + 1) chia hết cho 5

=>  n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5 

=> \(n^5-n⋮5\)(2)

 Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này

Mà ( 2 ; 3 ) = 1

=> n(n+1)(n-1) chia hết cho 2.3=6

=> n(n+1)(n-1)(n²+1 ) chia hết cho 6

Hay n^5 - n chia hết cho 6 (3)

Từ (2) , (3) và ( 5 ; 6 ) = 1

=> n^5 -n chia hết cho 5.6 = 30

Vậy n^5 - n chia hết cho 30

 

13 tháng 7 2017

Tạ Minh Khoa            

Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)

= n.[(n4 – n2) + (n2 – 1)]

= n.[n2(n2 – 1) + (n2 – 1)]

= n.(n2 – 1).(n2 + 1)

= n.(n2 – n + n – 1)(n2 + 1)

= n.[(n2 – n) + (n – 1)].(n2 + 1)

= n.[n(n- 1) + (n – 1)].(n2 + 1)

= n.(n – 1).(n + 1).(n2 + 1)

Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)

Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n

=> n5 – n có chữ số tận cùng bằng 0.

=> n5 – n chia hết cho 10 (2)

Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).

Tạ Minh Khoa

Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)

= n.[(n4 – n2) + (n2 – 1)]

= n.[n2(n2 – 1) + (n2 – 1)]

= n.(n2 – 1).(n2 + 1)

= n.(n2 – n + n – 1)(n2 + 1)

= n.[(n2 – n) + (n – 1)].(n2 + 1)

= n.[n(n- 1) + (n – 1)].(n2 + 1)

= n.(n – 1).(n + 1).(n2 + 1)

Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)

Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n

=> n5 – n có chữ số tận cùng bằng 0.

=> n5 – n chia hết cho 10 (2)

Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).

13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

11 tháng 6 2020

Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5

Xét m,n  đều không chia hết cho 5

Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)

\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1

\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1

từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1

\(\Rightarrow m^4-n^4\)chia hết cho 5

\(\Rightarrow A⋮5\)

Vậy ....

11 tháng 6 2020

Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì

=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên 

\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên 

=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.

26 tháng 10 2018

áp dụng định lí fecma nhé bạn

26 tháng 10 2018

Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)

Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)

~ Học tốt nha bạn~