K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

8 tháng 11 2021

\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)

\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)

\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)

\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)

\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

27 tháng 10 2018

\(A=2+2^2+2^3+....+2^{20}.\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+2^{19}\left(1+2\right)\)

\(A=3.\left(2+2^3+...+2^{19}\right)\)

\(\Rightarrow A⋮3\)

\(A=2+2^2+2^3+.....+2^{20}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{18}+2^{19}+2^{20}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{18}\left(1+2+2^2\right)\)

\(\Rightarrow A=7.\left(2+2^4+...+2^{18}\right)\)

\(\Rightarrow A⋮7\)

27 tháng 10 2018

\(A=2+2^2+2^3+2^4+2^5+.....+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{19}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{19}.3\)

\(=3\left(2+2^3+...+2^{19}\right)\)

\(\Rightarrow A⋮3\)

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

29 tháng 9 2019

chia hết cho 3

A=(2 mũ 2+2 mũ 3)+(2 MŨ 4+2 mũ 5)+...+(2 mũ 19+2 mũ 20)

A=(2 mũ 2 +2 mũ 3)+2 mũ 2.(2 mũ 2+2 mũ 3)+...+2 mũ 17.(2 mũ 2+2 mũ 3)

A=12+2 mũ 2.12+...+2 mũ 17.12

A=12.(1+2 mũ 2+...+2 mũ 17)

vậy A chia hết cho 3

chia hết cho7

A=(2 mũ 2+2 mũ 3 +2 mũ 4).....(2 mũ 18+2 mũ 19 +2 mũ 20)

A=(2 mũ 2 +2 mũ 3 +2 mũ 4).....2 mũ 16.(2 mũ 2+2 mũ 3+2 mũ 4)

A=28.....2 mũ 16.28

28.(1+...+2 mũ 16)

vậy a .....cho 7

chia hất cho 15

A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....(2 mũ 17+2 mũ 18+2 mũ 19+2 mũ 20)

A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....2 mũ 15.(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5)

A=60.....2 mũ 15.60

A=60.(1+...+2 mũ 15)

vậy a........cho 15.

CHÚC BẠN HOK TỐT!

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

9 tháng 10 2021
Tui có 4 nick đó
9 tháng 10 2021

NHANH NHA DNG CẦN

MA NÀO GIÚP TUI ĐI