Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) -Ta có: MA+MB>AB,MB+MC>BC,MC+MD>CD,MD+MA>AD (Bất đẳng thức tam giác).
2.(MA+MB+MC+MD)>AB+BC+CD+AD
MA+MB+MC+MD>AB+BC+CD+AD/2 (1).
-Ta có: MA+MB+MC+MD=(MA+MC)+(MB+MD)=AC+BD
Mà AC<AB+BC, AC<AD (Bất đẳng thức tam giác).
2AC<AB+BC+CD+AD
Tương tự: 2BD<AB+BC+CD+AD
Do đó: 2AC+2BD<2.(AB+BC+CD+AD)
AC+BD<AB+BC+CD+AD
MA+MB+MC+MA<AB+BC+CD+AD (2)
Từ (1) và (2) AB+BC+CD+AD/2<MA+MB+MC+MA<AB+BC+CD+AD
Đề là MA + MB + MC + MD nha bạn!
Ta có: chu vi tứ giác = AB + BC + DC + AD
Theo bất đẳng thức tam giác:
MA + MB > AB
MB + MC > BC
MC + MD > DC
MD + MA > AD
=> MA + MB + MB + MC + MC + MD + MD + MA > AB + BC + DC + AD
=> 2MA + 2MB + 2MC + 2MD > AB + BC + DC + AD
=> 2(MA + MB + MC + MD) > AB + BC + DC + AD
=> MA + MB + MC + MD > \(\frac{1}{2}\)(AB + BC + DC + AD) (1)
Ta có MA + MB + MC + MD = AC + BD
Mà AC < AB + BC
AC < AD + DC
=> 2AC < AB + BC + DC + AD
Tương tự với BD
=> 2BD < AB + BC + DC + AD
=> 2AC + 2BD < 2(AB + BC + DC + AD)
=> 2(AC + BD) < 2(AB + BC + DC + AD)
=> AC + BD > AB + BC + DC + AD (2)
Từ (1) và (2) => đpcm
Xét tam giác ABM; tam giác BCM; tam giác ADM; tam giác CDM ta có:
\(AM+BM>AB;BM+CM>BC;AM+DM>AD;CM+DM>CD\)
(áp dụng bất đẳng thức tam giác)
\(\Rightarrow AM+BM+BM+CM+AM+DM+CM+DM>AB+BC+AD+CD\)
\(\Rightarrow2.\left(AC+BD\right)>AB+BC+CD+AD\)(1)
\(\Rightarrow AC+BD>\dfrac{AB+BC+CD+AD}{2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)
Vậy trong 1 tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy(đpcm)
Chúc bạn học tốt!!!
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Đặt độ dài a = AB, b = BC, c = CD, d = AD
Gọi O là giao điểm 2 đường chéo AC và BD.
* Trong ∆ OAB, ta có:
OA + OB > a (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > c (bất đẳng thức tam giác) (2)
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c hay AC + BD > a + c (*)
* Trong ∆ ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)
* Trong ∆ OBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra:
OA + OB + OC + OD > b + d hay AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
* Trong ∆ ABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
* Trong ∆ ADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
* Trong ∆ ABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
* Trong ∆ BCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
Từ (5) và (6) suy ra: AC + BD < a + b + c + d
Gọi O là giao của AC và BD
AB>AO+BO
AD>AO+DO
BC>BO+CO
DC>DO+CO
=>AB+AD+BC+CD>2(AC+BD)
=>(AC+BD)<P/2
AC<AB+BC
AC<AD+DC
BD<BC+CD
BD<AB+AD
=>2(AC+BD)<2*C ABCD
=>AC+BD<C ABCD
Bạn tìm câu hỏi tương tự mình nhớ là cái này mình làm 3 lần rồi!