K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Ta có: \( \left(2^{3n+1}+2^n\right)\left(n^5-n\right)=\left(2^{3n+1}+2^n\right)n\left(n^4-1\right)\)

                                                              \(=\left(2^{3n+1}+2^n\right)n\left(n^2-1\right)\left(n^2+1\right)\)

                                                                \(=\left(2^{3n+1}+2^n\right)n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

                  Để chia hết cho 30 thì cần có một số chia hết cho 5;2;3

                   (...)(chia hết cho 30) thì \(\left(2^{3n+1}+2n\right)\left(n^5-n\right)\)chia hết cho 30

3 tháng 6 2017

Đề sai! Thử n = 2 là biết!

3 tháng 6 2017

Bn có sai ko? Hay đề là tìm n để Biểu thức \(⋮\) 2

Ta có: \(\left(3n+5\right)\left(2n-10\right)=2\left(n-5\right)\left(3n+5\right)\) \(⋮\) 2

=> Theo đề bài phải c/m: \(\left(6n+1\right)\left(n+5\right)\) \(⋮\) 2 (*)

Xét n là số lẻ => \(\left(6n+1\right)\left(n+5\right)\) là số chẳn => Biểu thức \(⋮\) 2

Xét n là số chẳn => \(\left(6n+1\right)\left(n+5\right)\) là số lẻ => \(⋮̸\) 2

=> Để (6n+1)(n+5)−(3n+5)(2n−10) \(⋮\) 2 thì n là số lẻ, n\(\in Z\)

3 tháng 6 2017

Sai đề chăng?

3 tháng 6 2017

chẳng nhẽ đăng 2 câu lại sai đề cả 2 ?

10 tháng 8 2018

Ngân ơi, bài ai giao thế ?

10 tháng 8 2018

a,

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)

b,

\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)

5 tháng 7 2016

xem lại câu a nhé bạn

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

9 tháng 11 2018

(n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 5n2 + 5n - 2 - n3 + 2 = 5(n2 + n) ⋮ 5

9 tháng 11 2018

Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\) chia hết cho 5

Vậy \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho5(đpcm)

6 tháng 3 2021

\(A=\left(2^n-1\right)\left(2^n+1\right)\)

\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)

\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)

Vậy \(A⋮3\forall n\in N\)

19 tháng 9 2018

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)