Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1
(2k+1)2-(2a+1)2
= 4k2+4k+1-4a2-4a-1
= 4(k2+k+a2+a)
Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2,
Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)
Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2
Suy ra a2+a+k2+k chia hết cho 2
Như vậy bài toán được chứng minh