Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = ( x + 4 )( x - 4 ) - 2x( 3 + x ) + ( x + 3 )2
= x2 - 16 - 6x - 2x2 + x2 + 6x + 9
= -7 ( đpcm )
N = ( x2 + 4 )( x + 2 )( x - 2 ) - ( x2 + 3 )( x2 - 3 )
= ( x2 + 4 )( x2 - 4 ) - ( x4 - 9 )
= x4 - 16 - x4 + 9
= -7 ( đpcm )
P = ( 3x - 2 )( 9x2 + 6x + 4 ) - 3( 9x3 - 2 )
= 27x3 - 8 - 27x3 + 6
= -2 ( đpcm )
Q = ( 3x + 2 )2 + ( 6x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 12x + 4 + 12x - 18x2 + 20 - 30x + 4 - 12x + 9x2
= -18x + 28 ( có phụ thuộc vào biến )
Mk k ghi đề nên lm luôn nhé:
a) A = (x3 - 1) + (x3 - 3x2.2 + 3.x.22 - 23) - 2(x3 + 1) + 6(x2 - 2x + 1)
= x3 - 1 + x3 - 6x2 + 12x - 8 - 2x3 - 2 + 6x2 - 12x + 6
= 5
Vậy biểu thức A không phụ thuộc vào giá trị của biến x
b) B = (27x3 - x3) - (x3 + 3.x2.2 + 3.x.22 + 23) + 2(x3 + 8) + 6x2 + 12x
= 27x3 - x3 - x3 - 6x2 - 12x - 8 + 2x3 + 16 + 6x2 + 12x
= 27x3 + 8
*câu b k biết đề có gì sai sót k nên bn tự sửa lại nhé*
*câu b k chứng minh đc*
A = ( x - 1 )( x2 + x + 1 ) + ( x - 2 )3 - 2( x + 1 )( x2 - x + 1 ) + 6( x - 1 )2
= x3 - 1 + x3 - 6x2 + 12x - 8 - 2( x3 + 1 ) + 6( x2 - 2x + 1 )
= 2x3 - 6x2 + 12x - 9 - 2x3 - 2 + 6x2 - 12x + 6
= -5 không phụ thuộc vào biến
=> đpcm
B = ( 3 - x )( x2 + 3x + 9 ) - ( x + 2 )3 + 2( x + 2 )( 4 - 2x + x2 ) + 6x( x + 2 ) < đã sửa một vài chỗ >
= -( x - 3 )( x2 + 3x + 9 ) - ( x3 + 6x2 + 12x + 8 ) + 2( x3 + 8 ) + 6x2 + 12x
= -( x3 - 27 ) - x3 - 6x2 - 12x - 8 + 2x3 + 16 + 6x2 + 12x
= 27 - x3 + x3 - 8 + 16
= 35 không phụ thuộc vào biến
=> đpcm
M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x
= 2
Vậy M không phụ thuộc vào biến ( đpcm )
N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3
= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )
= [ 2x - 1 - 2x ]3
= [ -1 ]3 = -1
Vậy N không phụ thuộc vào biến ( đpcm )
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
a )
\(A=xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
\(\Leftrightarrow A=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)
\(\Leftrightarrow A=3\)
\(\Leftrightarrow A\)ko phụ thuộc vào g/t của biến
b )
\(B=\left(x-9\right)\left(x-9\right)+\left(2x+1\right)^2-\left(5x-4\right)\left(x-2\right)\)
\(\Leftrightarrow B=x^2-2.x.9+9^2+\left(2x\right)^2+2.2x.1+1-\left[5x^2-4x-10x+8\right]\)
\(\Leftrightarrow B=x^2-18x+81+4x^2+4x+1-5x^2+4x+10x-8\)
\(\Leftrightarrow B=\left(x^2+4x^2-5x^2\right)+\left(-18x+4x+4x+10x\right)+\left(81-8+1\right)\)
\(\Leftrightarrow B=74\)
\(\Leftrightarrow B\)ko phụ thuộc vào g/t của biến
\(=2x^2\left(x^2-3x\right)-6x+5+3x\left(2x^2+2\right)-2-2x^4\)
\(=2x^4-6x^3-6x+5+6x^3+6x-2-2x^4\)
\(=3\)
Vậy gt của bt trên ko phụ thuộc vào gt của biến
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Giải:
\(S=\left(x+2\right)^3-6x\left(x+2\right)+\left(2x-1\right)^3+6x\left(2x-1\right)-9\left(x^3-2\right)\)
\(\Leftrightarrow S=x^3+6x^2+12x+8-6x^2-12x+8x^3-12x^2+6x-1+12x^2-6x-9x^3-18\)
\(\Leftrightarrow S=8-1-18\)
\(\Leftrightarrow S=-11\)
Vậy ...
Câu 2 có sai đề không ạ, mình làm không ra
Câu 2 đề sai nha bạn