Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+...+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+...+\dfrac{6}{50.56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+...+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{7}{56}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\dfrac{6}{56}\)
\(A=\dfrac{1}{1}.\dfrac{1}{56}\)
\(A=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{9}{12.21}+\dfrac{9}{21.30}\right)-4\left(\dfrac{10}{24.34}+\dfrac{10}{34.44}+\dfrac{10}{44.54}+\dfrac{10}{54.64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{5}{60}-\dfrac{2}{60}\right)-4\left(\dfrac{1}{24}-\dfrac{1}{64}\right)\)
\(B=5.\dfrac{3}{60}-\left(\dfrac{4}{24}-\dfrac{4}{64}\right)\)
\(B=5.\dfrac{1}{20}-\left(\dfrac{1}{6}-\dfrac{1}{16}\right)\)
\(B=\dfrac{5}{20}-\left(\dfrac{8}{48}-\dfrac{3}{48}\right)\)
\(B=\dfrac{1}{4}-\dfrac{5}{48}\)
\(B=\dfrac{12}{48}-\dfrac{5}{48}\)
\(B=\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}:\dfrac{7}{48}\)
\(\dfrac{A}{B}=\dfrac{1}{56}.\dfrac{48}{7}\)
\(\dfrac{A}{B}=\dfrac{1}{7}.\dfrac{6}{7}\)
\(\dfrac{A}{B}=\dfrac{6}{49}=\dfrac{48}{392}< \dfrac{49}{392}=\dfrac{1}{8}\)
\(\dfrac{A}{B}< \dfrac{1}{8}\)
Vậy \(\dfrac{A}{B}< \dfrac{1}{8}\)
\(P=\dfrac{1000}{100-x}\)
\(P_{MAX}\Rightarrow P\in Z^+\)
\(\Rightarrow100-x=1\)
\(\Rightarrow x=100-1=99\)
\(\Rightarrow P_{MAX}=\dfrac{1000}{100-99}=1000\)
\(A=\dfrac{1}{8.14}+\dfrac{1}{14.20}+\dfrac{1}{20.26}+.....+\dfrac{1}{50.56}\)
\(A=\dfrac{1}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+.....+\dfrac{1}{50}-\dfrac{1}{56}\right)\)
\(A=\dfrac{1}{6}.\left(\dfrac{1}{8}-\dfrac{1}{56}\right)=\dfrac{1}{6}.\dfrac{3}{28}=\dfrac{1}{56}\)
\(B=\dfrac{45}{12.21}+\dfrac{45}{21.30}-\dfrac{40}{24.34}-\dfrac{40}{34.44}-\dfrac{40}{44.54}-\dfrac{40}{54.64}\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}\right)-5\left(\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)
\(B=5\left(\dfrac{1}{12}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{30}+\dfrac{1}{24}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{54}+\dfrac{1}{54}-\dfrac{1}{64}\right)\)\(B=5\left(\dfrac{1}{12}-\dfrac{1}{64}\right)=5.\dfrac{13}{192}=\dfrac{65}{192}\)
\(\dfrac{A}{B}=\dfrac{1}{\dfrac{56}{\dfrac{65}{192}}}=\dfrac{24}{455}\)
\(\dfrac{1}{8}=\dfrac{3}{24}\)
\(\Rightarrow\dfrac{A}{B}< \dfrac{1}{8}\rightarrowđpcm\)
a) Ta có: \(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}\)
\(=\frac{15}{40}-\frac{8}{40}+\frac{3}{40}\)
\(=\frac{10}{40}=\frac{1}{4}\)
b) Ta có: \(\frac{21}{4}\cdot\frac{3}{8}+\frac{43}{4}\cdot\frac{3}{8}-4\cdot\frac{1}{2}\)
\(=\frac{3}{8}\left(\frac{21}{4}+\frac{43}{4}\right)-2\)
\(=\frac{3}{8}\cdot16-2\)
\(=6-2=4\)
c) Ta có: \(\frac{-5}{9}+\frac{7}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{8}{15}\)
\(=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{-2}{11}\)
\(=-1+1+\frac{-2}{11}\)
\(=\frac{-2}{11}\)
d) Ta có: \(125\%\cdot\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1.5\right)+2016^0\)
\(=\frac{5}{4}\cdot\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{16}\cdot3+1\)
\(=\frac{15}{16}+\frac{16}{16}=\frac{31}{16}\)
a ) \(\left(-\frac{40}{52}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
= \(\left(-\frac{16}{65}.\frac{17}{20}\right):\frac{64}{75}\)
= \(\left(-\frac{68}{325}\right):\frac{64}{75}\)
= \(\frac{-51}{208}\)
b ) \(-\frac{10}{11}.\frac{8}{9}+\frac{7}{18}.\frac{10}{11}\)
= \(\frac{10}{11}.\left(-\frac{8}{9}+\frac{7}{18}\right)\)
= \(\frac{10}{11}.\left(-\frac{1}{2}\right)\)
= \(\frac{-5}{11}\)
c ) \(\frac{45^{10}.5^{20}}{75^{15}}\)
= \(\frac{5^{10}.3^{20}.5^{20}}{5^{30}.3^{15}}\)
= \(\frac{5^{30}.3^{20}}{5^{30}.3^{15}}\)
= 3 5
= 243
d ) ( - 0,125 ) 3 . 80 4
= -80000
Ta có: \(B=\frac{1}{112}-\frac{1}{84}-\frac{1}{60}-\frac{1}{40}-\frac{1}{24}-\frac{1}{12}-\frac{1}{4}\)
\(\Rightarrow2B=\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\left(1-\frac{1}{7}\right)\)
\(\Rightarrow2B=\frac{1}{56}-\frac{6}{7}\)
\(\Rightarrow2B=-\frac{47}{56}\)
\(\Rightarrow B=-\frac{47}{112}\)
Hok tốt nha^^
a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)
\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)
Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)
Vậy ..........
\(A=\frac{1}{8.14}+\frac{1}{14.20}+\frac{1}{20.26}+...+\frac{1}{50.56}\)
\(A=\frac{1}{6}.\left(\frac{6}{8.14}+\frac{6}{14.20}+\frac{6}{20.26}+...+\frac{6}{50.56}\right)\)
\(A=\frac{1}{6}.\left(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+\frac{1}{20}-\frac{1}{26}+...+\frac{1}{50}-\frac{1}{56}\right)\)
\(A=\frac{1}{6}.\left(\frac{1}{8}-\frac{1}{56}\right)\)
\(A=\frac{1}{6}.\frac{3}{28}\)
\(A=\frac{1}{56}\)
\(B=\frac{45}{12.21}+\frac{45}{21.30}-\frac{40}{24.34}-\frac{40}{34.44}-\frac{40}{44.54}-\frac{40}{54.64}\)
\(B=5.\left(\frac{9}{12.21}+\frac{9}{21.30}\right)-4.\left(\frac{10}{24.34}+\frac{10}{34.44}+\frac{10}{44.54}+\frac{10}{54.64}\right)\)
\(B=5.\left(\frac{1}{12}-\frac{1}{21}+\frac{1}{21}-\frac{1}{30}\right)-4.\left(\frac{1}{24}-\frac{1}{34}+\frac{1}{34}-\frac{1}{44}+\frac{1}{44}-\frac{1}{54}+\frac{1}{54}-\frac{1}{64}\right)\)
\(B=5.\left(\frac{1}{12}-\frac{1}{30}\right)-4.\left(\frac{1}{24}-\frac{1}{64}\right)\)
\(B=5.\frac{1}{20}-4.\frac{5}{192}\)
\(B=\frac{1}{4}-\frac{5}{48}\)
\(B=\frac{7}{48}\)
Ta có \(\frac{A}{B}=\frac{1}{56}\div\frac{7}{48}=\frac{1}{56}\times\frac{48}{7}=\frac{6}{49}\)
Lấy \(\frac{6}{49}-\frac{1}{8}=-\frac{1}{392}< 0\)
\(\Rightarrow\frac{6}{49}< \frac{1}{8}\) hay \(\frac{A}{B}< \frac{1}{8}\)
\(A=\frac{1}{8.14}+\frac{1}{14.20}+\frac{1}{20.26}+....+\frac{1}{50.56}\)
\(=\frac{1}{6}.(\frac{6}{8.14}+\frac{6}{14.20}+\frac{6}{20.26}+....+\frac{6}{50.56})\)
\(=\frac{1}{6}.(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+\frac{1}{20}-\frac{1}{26}+....+\frac{1}{50}-\frac{1}{56})\)
\(=\frac{1}{6}.(\frac{1}{8}-\frac{1}{56})\)
\(=\frac{1}{6}.(\frac{7}{56}-\frac{1}{56})\)
\(=\frac{1}{6}.\frac{6}{56}\)
\(=\frac{1}{56}\)
\(B=\frac{45}{12.21}+\frac{45}{21.30}-\frac{40}{24.34}-\frac{40}{34.44}-\frac{40}{44.54}-\frac{40}{54.64}\)
\(=5(\frac{9}{12.21}+\frac{9}{21.30})-4(\frac{10}{24.34}+\frac{10}{34.44}+\frac{10}{44.54}+\frac{10}{54.64})\)
\(=5(\frac{1}{12}-\frac{1}{21}+\frac{1}{21}-\frac{1}{30})-4(\frac{1}{24}-\frac{1}{34}+\frac{1}{34}-\frac{1}{44}+\frac{1}{44}-\frac{1}{54}+\frac{1}{54}-\frac{1}{64})\)
\(=5(\frac{1}{12}-\frac{1}{30})-4(\frac{1}{24}-\frac{1}{64})\)
\(=5(\frac{5}{60}-\frac{2}{60})-(\frac{4}{24}-\frac{4}{64})\)
\(=5.\frac{1}{20}-(\frac{1}{6}-\frac{1}{16})\)
\(=\frac{1}{4}-(\frac{8}{48}-\frac{3}{48})\)
\(=\frac{1}{4}-\frac{5}{48}\)
\(=\frac{12}{48}-\frac{5}{48}=\frac{7}{48}\)
\(\frac{A}{B}=\frac{1}{56}\div\frac{7}{48}\)
\(=\frac{1}{56}.\frac{48}{7}\)
\(=\frac{6}{49}=\frac{48}{392}\)bé hơn \(\frac{49}{392}=\frac{1}{8}\)
Vậy \(\frac{A}{B}\)bé hơn \(\frac{1}{8}\)
Chúc bạn học tốt