\(\frac{a^4+b^4}{2}>=ab^3+a^3b-a^2b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

\(a^4+b^4\ge2a^3b+2ab^3-2a^2b^2\)

\(\Leftrightarrow\left(a^4-2a^3b+a^2b^2\right)+\left(b^4-2ab^3+a^2b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-ab\right)^2+\left(b^2-ab\right)^2\ge0\) (đúng)

\(\Rightarrow\)Điều phải chứng minh

3 tháng 12 2017

4 + b 4 ≥ 2a 3b + 2ab 3 − 2a 2b 2

⇔ a 4 − 2a 3b + a 2b 2 + b 4 − 2ab 3 + a 2b 2 ≥ 0

⇔ a 2 − ab 2 + b 2 − ab 2 ≥ 0 (đúng)

⇒Điều phải chứng minh

 chúc cậu hok tốt @_@

8 tháng 8 2019

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )

vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)

15 tháng 10 2016

Câu trên đề sai

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)

Vậy nó là số nguyên

15 tháng 10 2016

Lớn hơn hoặc bằng đấy

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
11 tháng 9 2016

Ta có a+ b- a3 b - ab= (a - b)(a3 - b3)

= (a -b)2 (a2 + ab + b2)

= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)

Ta lại có a4 + b4 \(\ge2a^2b^2\)

Từ đó => 2(a4 + b4\(\ge\)ab3 + a3 b + 2 a2 b2

11 tháng 10 2020

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.