\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

biết r...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Bạn vào câu hỏi tương tự nhé !!!

8 tháng 12 2015

hai cái đấy giống hệt nhau 

25 tháng 10 2017

Ta chứng minh bất đẳng thức phụ

\(\frac{1}{8x^2+1}\ge\frac{2}{x+1}-1\)

\(\Leftrightarrow4x^3-4x^2+x\ge0\)

\(\Leftrightarrow x\left(2x-1\right)^2\ge0\)(đúng)

Áp dụng vào bài toán ta được

\(\frac{1}{8a^2+1}+\frac{1}{8b^2+1}+\frac{1}{8c^2+1}\ge-1+\frac{2}{a+1}-1+\frac{2}{b+1}-1+\frac{2}{c+1}\)

\(=-3+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=-3+4=1\)

3 tháng 6 2020

Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

\(\Rightarrow3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=1\)

\(\Rightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)

Xét BĐT  \(\Sigma_{cyc}\frac{1}{8a^2+1}\ge1\Leftrightarrow3-\Sigma_{cyc}\frac{1}{8a^2+1}\le2\)

\(\Leftrightarrow\Sigma_{cyc}\frac{8a^2}{8a^2+1}\le2\Leftrightarrow\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le2\)

Xét BĐT phụ: \(\frac{4x^2}{8x^2+1}\le\frac{x}{x+1}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{x\left(2x-1\right)^2}{\left(x+1\right)\left(8x^2+1\right)}\)(đúng với mọi x thực dương)

Áp dụng, ta có: \(\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le\text{​​}\Sigma_{cyc}\frac{a}{a+1}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{a\left(b+c\right)}{b+c}+\frac{b^2}{a+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

=>đpcm

4 tháng 8 2018

Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy