\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}< \frac{1}{24}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

Đề sai, đề đúng phải là \(VT< \frac{1}{20}\)

Dễ dàng chứng minh đề sai, ta có:

\(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}>\frac{1}{5^2}+\frac{1}{5^3}=\frac{6}{125}>\frac{1}{24}\)

Còn chứng minh \(VT< \frac{1}{20}\) thì như sau:

\(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2005}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2006}}\)

\(\Rightarrow5A-\frac{1}{5}+\frac{1}{5^{2006}}=A\)

\(\Rightarrow4A=\frac{1}{5}-\frac{1}{5^{2006}}< \frac{1}{5}\)

\(\Rightarrow A< \frac{1}{20}\)

10 tháng 3 2019

Mơn cậu nha!!

16 tháng 9 2018

Dễ mà bạn.

11 tháng 12 2017

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{49}+\left(\frac{1}{5}\right)^{50}\)

\(5M=1+\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{48}+\left(\frac{1}{5}\right)^{49}\)

5M - M = \(1-\left(\frac{1}{5}\right)^{50}\)hay 4M = \(1-\left(\frac{1}{5}\right)^{50}\)< 1

\(\Rightarrow M=\frac{1-\left(\frac{1}{5}\right)^{50}}{4}< \frac{1}{4}\)

7 tháng 7 2018

\(M=\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{50}\)(1)

\(\Rightarrow5M=1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^{49}\)(2)

Lấy (2)-(1) ta có

\(\Rightarrow4M=1-\left(\frac{1}{5}\right)^{50}\)

\(\Rightarrow M=\frac{1-\frac{1}{5^{50}}}{4}\)

Do \(1-\frac{1}{5^{50}}< 1\)

\(\Rightarrow M< \frac{1}{4}\)

7 tháng 1 2016

Mình nhân S với 5 rồi rút gọn

ko can biet: làm đc mk làm lâu r :<