Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)
\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Áp dụng Cauchy-Schwarz ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)
Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)
Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)
hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)
Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)
Ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu = xảy ra khi \(a=b\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b\)
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)
\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)
\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)
\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)
Dấu "=" khi \(a=b=c\)
Lời giải:
Sử dụng PP khai triển :
\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)
\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)
\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)
\(\Leftrightarrow a^2+b^2+6ab\geq 0\)
\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)
Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)
mk nghĩ đề bài như này ms đúng chứ
\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)
vs a,b>0
cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)
dau = xay ra khi a=b>0