\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)+\sqrt{b\left(3b+a\right)}}}\ge\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2018

Lời giải:

Sử dụng PP khai triển :

\(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}\geq \frac{1}{2}\)

\(\Leftrightarrow \frac{(a+b)^2}{a(3a+b)+b(3b+a)}\geq \frac{1}{4}\)

\(\Leftrightarrow 4(a+b)^2\geq a(3a+b)+b(3b+a)\)

\(\Leftrightarrow a^2+b^2+6ab\geq 0\)

\(\Leftrightarrow (a+b)^2+4ab\geq 0\). Điều này luôn đúng với \(a,b\geq 0\) tuy nhiên dấu bằng không xảy ra do \(a,b\neq 0\)

Do đó: \(\frac{a+b}{\sqrt{a(3a+b)+b(3b+a)}}> \frac{1}{2}\)

31 tháng 1 2018

mk nghĩ đề bài như này ms đúng chứ

\(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\)

vs a,b>0

cm \(vt=\dfrac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\dfrac{2\left(a+b\right)}{\dfrac{4a+3a+b}{2}+\dfrac{4b+3b+a}{2}}=\dfrac{2\left(a+b\right)}{\dfrac{8\left(a+b\right)}{2}}=\dfrac{1}{2}\)(dpcm)

dau = xay ra khi a=b>0

4 tháng 10 2017

thangbnsh@gmail.com helpme

4 tháng 10 2017

thangbnsh@gmail.comacelegona

11 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)

\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

28 tháng 5 2018

Áp dụng Cauchy-Schwarz ta có:

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)

15 tháng 12 2018

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)

Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)

hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)

Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)

31 tháng 3 2017

Ta có: 

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)

Dấu = xảy ra khi \(a=b\)

31 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt gif.latex?%5Csqrt%7Ba%7D%3Dx%3B%5Csqrt%7Bb%7D%3Dy. Do đó gif.latex?x+y%3D1. Cần chứng minh:

gif.latex?3%28x%5E2+y%5E2%29%5E2%20-%28x%5E2+y%5E2%29+4x%5E2%20y%5E2%20%5Cgeqq%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B%28x%5E2+3y%5E2%29%283x%5E2+y%5E2%29%7D

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,  \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

NV
9 tháng 3 2019

Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)

\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)

\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)

\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)

Dấu "=" khi \(a=b=c\)