K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)

\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)

\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)

19 tháng 9 2017

hộ vs ae ơi

Đặt \(\sqrt{3}\sin x+\cos x=a\)

Theo đề, ta có: \(a=3+\dfrac{1}{a+1}=\dfrac{3a+3+1}{a+1}=\dfrac{3a+4}{a+1}\)

\(\Leftrightarrow a^2+a-3a-4=0\)

\(\Leftrightarrow a^2-2a-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\)

TH1: \(a=1+\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}\sin x+\cos x=\sqrt{5}+1\)(1)

Vì \(3+1=4< 6+2\sqrt{5}\)

nên (1) vô nghiệm

TH2: \(a=1-\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}\sin x+1\cos x=1-\sqrt{5}\)

\(\Leftrightarrow\sin\left(x+\dfrac{\Pi}{6}\right)=\dfrac{1-\sqrt{5}}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{\Pi}{6}=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\\x+\dfrac{\Pi}{6}=\Pi-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi-\dfrac{\Pi}{6}\\x=-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

3 tháng 9 2018

\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)

\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)

\(1-sinx+\sqrt{3}cosx=2sin5x+1\)

\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)

3 tháng 9 2018

\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)

\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)

\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)

\(\sqrt{3}sin2x+cos2x=2cos4x\)

\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)

6 tháng 9 2018

a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)

ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ

\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)

1 tháng 8 2018

1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)

\(y=\dfrac{\sin x+1}{\cos x+2}\)

\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)

pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow3y^2-4y\le0\)

\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)

2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)

\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)

pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)

kiểm tra giúp mình xem có sai sót gì không...

2 tháng 8 2018

bạn ơi tsao chỗ pt có nghiệm chỗ câu 1 lại ra bất pt vậy

20 tháng 8 2018

a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)

ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)

(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)

⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)

\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)

Đến đây tự giải tiếp nha nhớ đối chiếu đk.

20 tháng 8 2018

b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)

ĐKXĐ: sinx≠0 và cosx≠1

(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)

⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x

⇔2cos3x - cos2x - 2cosx +1 = 0

⇔ (cosx-1)(cosx+1)(2cosx-1)=0