Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)
Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)
Ta có:
\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)
\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)
\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{50}\)
=> ĐPCM.
Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)
\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)
\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)
\(\Leftrightarrow S< \dfrac{1}{50}\)
Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)
A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.
Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\)
1/6<1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
ta có:
(+)1/5^2+1/6^2+1/7^2+...+1/100^2<1/4.5+1/5.6+...+1/99.100
=1/4-1/5+1/5-...+1/99-1/100
=1/4-1/100<1/4
=>1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
(+)1/5^2+1/6^2+1/7^2+...+1/100^2>1/5.6+...+1/99.100
=1/5-1/6+1/6-...+1/99-1/100
=1/5-1/100>1/6
=>1/5^2+1/6^2+1/7^2+...+1/100^2
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+....+\dfrac{1}{100^2}\\ >\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\ =\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\\ =\dfrac{96}{505}\\ >\dfrac{1}{6}\)
\(\dfrac{1}{5^2}+...+\dfrac{1}{100^2}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+....+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
Đề chứng minh VT < \(\dfrac{1}{50}\) , nếu chứng minh VT < 50 thì lại mất đi cái hay của bài toán vì quá đơn giản. VT có 50 số hạng, dễ thấy mỗi số hạng đều bé hơn 1. Dù cộng tất cả lại cũng bé hơn 50 chứ chưa nói đến lại trừ đi.
Đặt: \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
Ta có:
\(7^2A=7^2\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)\\ =1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}+1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}\\ =1-\dfrac{1}{7^{100}}\\ \Leftrightarrow50A=1-\dfrac{1}{7^{100}}\\ \Rightarrow50A< 1\\ \Rightarrow A< \dfrac{1}{50}\)