\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{19}< 2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
6 tháng 4 2024

\(\dfrac{1}{19}< \dfrac{1}{5}\)   ;\(\dfrac{1}{18}< \dfrac{1}{5}\) ;\(\dfrac{1}{17}< \dfrac{1}{5}\) ;\(\dfrac{1}{16}< \dfrac{1}{5}\) ;\(\dfrac{1}{15}< \dfrac{1}{5}\) ;\(\dfrac{1}{14}< \dfrac{1}{5}\)

\(\dfrac{1}{13}< \dfrac{1}{5}\)   ;\(\dfrac{1}{12}< \dfrac{1}{5}\) ;\(\dfrac{1}{11}< \dfrac{1}{5}\)\(\dfrac{1}{10}< \dfrac{1}{5}\) ;\(\dfrac{1}{9}< \dfrac{1}{5}\) ;\(\dfrac{1}{8}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\) ;\(\dfrac{1}{6}< \dfrac{1}{5}\)

Ta có :

(19 - 5) : 1 + 1= 15 (số hạng)

\(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{7}+\dfrac{1}{6}\) < \(\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...+\dfrac{1}{5}\)

(14 số hạng)                              (14 số hạng)

\(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{7}+\dfrac{1}{6}+\dfrac{1}{5}\) < \(\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...+\dfrac{1}{5}+\dfrac{1}{5}\)

(15 số hạng)                                     (15 số hạng)

= > A < 3

= > A < 2

(sao cứ thấy có vấn đề nhỉ?)

1 tháng 6 2017

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{2006.2007}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2007}\)

\(=\dfrac{1}{4}-\dfrac{1}{2007}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4}\left(đpcm\right)\)

Vậy...

1 tháng 6 2017

Hỏi đáp Toán

30 tháng 6 2017

=> 1 - 1 /2^2 + 1 /2^2 -1 /3^2 + 1/3^2 - 1/4^2 + .... + 1/9^2 - 1/10^2 <1 => 1 - 1/10^2 <1 ( luôn đúng )

11 tháng 4 2018

2,

\(M=\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\) =\(\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)

\(=\dfrac{3}{4}\)

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá