Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng chứng minh được: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
Thật vậy:
\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)Trở lại bài toán
\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)
\(A=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+....+\dfrac{1}{n^2+\left(n+1\right)^2}\)
\(A< \dfrac{1}{2.1.\left(1+1\right)}+\dfrac{1}{2.2.\left(2+1\right)}+\dfrac{1}{2.3.\left(3+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\)
\(A< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{2n\left(n+1\right)}\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)
\(A< \dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(A< \dfrac{1}{2}\left(1-\dfrac{1}{n+1}\right)\)
\(A< \dfrac{1}{2}-\dfrac{1}{2n+2}< \dfrac{1}{2}\left(đpcm\right)\)
Đây là tính hợp lí ... mà câu a là 27,5 chứ không phải 2,75...
\(A=\dfrac{7,5-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{27,5-2,2+\dfrac{11}{7}+\dfrac{11}{3}}=\dfrac{\dfrac{15}{2}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{55}{2}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{3}}\\ =\dfrac{3\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
b: \(=26:\left[\dfrac{3:0.1}{2.5\cdot2}+\dfrac{0.25\cdot4}{2}\right]+\dfrac{2}{3}\cdot\dfrac{21}{4}\)
\(=26:\left[\dfrac{30}{5}+1\right]+\dfrac{42}{12}\)
\(=\dfrac{26}{7}+\dfrac{42}{12}=\dfrac{101}{14}\)
c: \(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{\left(\dfrac{1}{34}+\dfrac{33}{34}\right)}{\dfrac{1}{2}+\dfrac{9}{2}}=1:5=\dfrac{1}{5}\)
\(=\dfrac{\left(13+\dfrac{1}{4}-2-\dfrac{5}{27}-10-\dfrac{5}{6}\right)\cdot230.04+46.75}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\dfrac{37}{3}-14-\dfrac{2}{7}}\)
\(=\dfrac{\dfrac{25}{108}\cdot\dfrac{5751}{25}+46.75}{\dfrac{100}{21}\cdot\dfrac{3}{37}-\dfrac{100}{7}}\)
\(=\dfrac{100}{\dfrac{-3600}{259}}=-\dfrac{259}{36}\)
\(\left(-\dfrac{2}{5}\right)^2\cdot\left|\dfrac{1}{3}-\dfrac{3}{5}\right|-\dfrac{2}{5}\cdot\sqrt{\dfrac{1}{25}}+\dfrac{4}{3}\)
\(=\dfrac{4}{25}\cdot\dfrac{4}{15}-\dfrac{2}{5}\cdot\dfrac{1}{5}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{2}{25}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{30}{375}+\dfrac{500}{375}\)
\(=\dfrac{486}{375}=\dfrac{162}{125}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
Chứng minh 1 bất đẳng thức cơ bản sau:\(\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2n\left(n+1\right)}\)
Thật vậy: \(\dfrac{1}{n^2+\left(n+1\right)^2}=\dfrac{1}{n^2+n^2+2n+1}=\dfrac{1}{2n^2+2n+1}< \dfrac{1}{2n^2+2n}=\dfrac{1}{2n\left(n+1\right)}\)
Thay vào bài toán \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}=\dfrac{1}{1^2+\left(1+1\right)^2}+\dfrac{1}{2^2+\left(2+1\right)^2}+\dfrac{1}{3^2+\left(3+1\right)^2}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)
\(< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2n\left(n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}-\dfrac{1}{2\left(n+1\right)}< \dfrac{1}{2}\left(đpcm\right)\)