K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Đề sai rồi bạn

Đa thức vẫn có nghiệm là 1

16-15+14-13+12-1=0

Kiểm tra lại đề nhé

5 tháng 4 2017

ai tk mk thì mk tk lại

21 tháng 2 2020

Ta xét 3 khoảng giá trị:

+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này f(x) vô nghiệm.

+) Nếu \(0< x< 1\)

Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)

Vì 0 < x < 1 nên \(x^5,1-x^3>0\)

Áp dụng bđt Cauchy, ta được:

\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)

\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)

Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)

Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)

\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)

Ở khoảng này đa thức cũng vô nghiệm.

+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này đa thức cũng vô nghiệm.

Vậy đa thức f(x) vô nghiệm

6 tháng 4 2017

x6-x5+x4-x3+x2-x+1

=(x6-x5)+(x4-x3)+(x2-x)+1

Với x=0, ta có đa thức bằng 1, vô nghiệm

Với x khác 0, ta có x6>x5, x4>x3,x2>x (*)

Thật vậy, nếu x là số dương thì (*) là điều đương nhiên

               nếu x là số âm thì x6, x4,x2 là số dương còn x5,x3,x là số âm 

Từ (*) =>x6-x5>0 , x4-x3>0 , x2-x>0

=> (x6-x5)+(x4-x3)+(x2-x)+1>0

Vậy đa thức x6-x5+x4-x3+x2-x+1 vô nghiệm

6 tháng 4 2017

 xét 2 trường hợp

trường hợp1 x khác0

x^6>x^5

x^4>x^3

x^2>x

nên x^6-x^5+x^4-x^3+x^2-x+1 >0

suy ra nó vô ngiệm

trường hợp 2 x=0

x^6-x^5+x^4-x^3+x^2-x=0

nên x^6-x^5+x^4-x^3+x^2-x +1=1

suy ra nó vô nghiệm

2 tháng 4 2018

Bn viết rõ đề ra đi 

3 tháng 4 2018

P(x)= - x+ x- x+ x - 1

vô nghiệm khi nào vậy bạn

Đề thiếu rồi bạn ạ

31 tháng 3 2016

No co nghiem chu ban 

14 tháng 1 2018

a, Ta có: \(x^2\ge0\Rightarrow x^2+4\ge4>0\)

Vậy đa thức vô nghiệm

b, \(x^2+2x+2=x^2+x+x+2=x\left(x+1\right)+\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1=\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy...

d, \(x^2-6x+10=x^2-3x-3x+10=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy..

16 tháng 6 2020

F(x) = 1 + x2 + x4 + x6 + ... + x2018 + x2020

Ta có : \(x^2\ge0\forall x\)

            \(x^4\ge0\forall x\)

            \(x^6\ge0\forall x\)

...

            \(x^{2020}\ge0\forall x\)

\(1>0\)

=> F(x) = \(1+x^2+x^4+x^6+...+x^{2018}+x^{2020}\ge1>0\)

=> F(x) vô nghiệm ( đpcm )

7 tháng 4 2016

a) P(x)=3x- 5x+x + 2x- x - 4 + 3x+ x+ 7

= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7

= 3x2 + 0 + 0 + x4 + 3

= 3x2 + x4 + 3

b) Vì x2 > hoặc = 0 vs mọi x thuộc R

=))  3x  > hoặc = 3 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > hoặc = x4 + 6 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > 0

Vậy đa thức 3x2 + x4 + 3  vô nghiệm 

2 thieu đề

8 tháng 4 2016

Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x> 0 hoặc 3x= 0  vì xcó thể = 0 được. VÌ vậy nếu bạn bảo 3x>/= 3 là sai

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)