Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
* \(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)
\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)
\(=4\cdot\left(-8\right)-6+2+10\)
\(=-26\)
* H(x) + Q(x) = P(x)
<=> H(x) = P(x) - Q(x)
H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)
= \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)
= \(\frac{1}{2}x^2-\frac{1}{2}x\)
* H(x) luôn nguyên với mọi x
Chỗ này bạn xem lại đề
a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)
\(=-32.\left(-6\right)+2+10=192+2+10=204\)
b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)
\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)
\(=\frac{1}{2}x^2-\frac{1}{2}x\)
\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3
TH1 : Ta thay đa thức trên có x = -1
\(3.\left(-1\right)^2+5=3.1+5=8\)
TH2 : Ta thay đa thức trên có x = 0
\(3.0^2+5=3.0.5=0\)
TH3 : Ta thay đa thức trên có x = 3
\(3.3^2+5=3.9+5=27+5=32\)
Ta KL đc : R luôn dương với mọi giá trị x
ta có x2+x+1= x2+x+1+x-x= (x+1)2-x
Vì (x+1)2 \(\ge\)0 và (x+1)2>x
nên x2+x+1 luôn luôn dương với mọi giá trị của x
xét x>0 suy ra biểu thúc có gi trị dương
xét x,0
ta có \(x^2\)>0
suy ra \(x^2\)+x > 0
suy ra \(x^2\)+x+1 luôn luôn dương với mọi gi trị của x
Ta có: x4 > 0 với mọi x
và y6 > 0 với mọi y
=> x4y6 > 0 với mọi x,y hay x4y6 không âm với mọi x,y