Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .
Nếu một trong các số trên chia hết cho 1995 thì dễ có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 khả năng sẽ chỉ có 1994
dư là 1 ; 2 ; 3 ; ... ; 1994.
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia
cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
bạn dùng chatgpt ạ?
tại vì cách giải của định lý dirichlet không như thế này.
Ko phải tôi ko cần chatgpt nhưng ứng dụng này làm sai mà t xóa app chatgpt như thế
Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)
Và ta có \(n+2016-n=2015⋮2015\)
Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015