Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dãy các số: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Có \(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên số đó là hợp số.
Vậy dãy số trên gồm toàn hợp số.
Có. Nếu lấy A = 2.3.4....2015.2016.2017, thì A chia hết cho 2, 3, ..., 2015, 2016, 2017.
Và dãy 2015 số bắt đầu từ A+2 đều là hợp số:
A + 2; A + 3; ....; A + 2015; A + 2016; A + 2017
Bởi vì A + 2 chia hết cho 2
A + 3 chia hết cho 3
.....
A + 2015 chia hết cho 2015
A + 2016 chia hết cho 2016
A + 2017 chia hết cho 2017
A= 201510-1 =.....5 - 1 = ......4 là hợp số
B= 201510 + 1 = ......5 + 1 = ........6 là hợp số
Cả hai đều là hợp số , không phải là số nguyên tố
B2 : n=1
vì nếu lớn hơn 1 thì có 5soos chia hết cho 2 và ít nhất 1 số chia hết cho3 là số lẻ
nếu n=0 thì có 4soos nguyên tố
nhắn đúng cho mình nhé
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.