Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
Ta có: 129 : a dư 10 => 129 - 10 \(⋮\) a => 119 \(⋮\) a (a > 10)
61 : a dư 10 => 61 - 10 \(⋮\) a => 51 \(⋮\) a (a > 10)
=> a \(\in\) ƯC(119,51)
119 = 7.17
51 = 3.17
ƯCLN(119,51) = 17
ƯC(119,51) = Ư(17) = {1;17}
Vì a > 10 nên a = 17
Vậy a = 17
xem ai thông minh, tinh mắt nhất có thể luận ra toàn bộ đề và giúp mk giải nào!!
a)0,5-|x-3,5|
Vì |x-3,5|\(\ge0\)
Do đó 0,5-|x-3,5|\(\ge0,5\)
Dấu = xảy ra khi x-3,5=0
x=3,5
Vậy Max A=0,5 khi x=3,5
Mỏi cổ quá khi đọc đề bài của bn nên mk làm câu a thôi
Vậy
c) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}\)
\(=\frac{1.2.3.4...2014}{2.3.4.5...2015}=\frac{\left(1.2.3.4...2014\right)}{\left(2.3.4.5...2014\right).2015}=\frac{1}{2015}\)
Gọi $p^2$ là số chính phương bất kì.($p\in \mathbb{N}$)
Mọi số $p$ đều viết được dưới dạng: $10a+b$ với mọi $a,b\in \mathbb{N}$ và $b\in (0;1;...;9)$.
Khi đó: $p^2=(10a+b)^2$ có chữ số tận cùng là chữ số tận cùng của $b^2$.
Mà chữ số tận cùng của $b^2$ là: $0;1;4;9;6;5$.
Từ đây suy ra các số chính không tận cùng bởi các số: $2,3,7,8$.
b) Dựa vào dấu hiệu câu a), ta có:
$3.5.7.9.11+3$ có tận cùng là $8$ và $2.3.4.5.6-3$ có số tận cùng là $7$.
Nên chúng không là số chính phương
Có 45 tam giác.
Còn 2 câu còn lại đề là j z, chú phải viết rõ thì chụy mới chỉ cho mà biết đk chứ!!!!
Giải:
Ta có: \(\overline{abcabc}=\overline{abc}.1001\)
\(\Rightarrow\overline{abc}.1001⋮3\)
\(\Rightarrow\overline{abc}.1001⋮7\)
\(\Rightarrow\overline{abc}.1001⋮11\)
Mà 3, 7, 11 đều là số nguyên tố
Vậy \(\overline{abcabc}\) chia hết cho ít nhất 3 số nguyên tố
Ta có:
\(\overline{abcabc}=\overline{abc}.1001\)
Ta lại có:
\(\overline{abc}.1001=\overline{abc}.143.7⋮7\)
\(\overline{abc}.1001=\overline{abc}\cdot91\cdot11⋮11\)
\(\overline{abc}.1001=\overline{abc}\cdot77\cdot13⋮13\)
\(\Rightarrow\overline{abc}.1001⋮7;11;13\)
\(\Rightarrow\overline{abcabc}⋮7;11;13\)
Mà 7; 11 và 13 đều là số nguyên tố
=> \(\overline{abcabc}\) chia hết cho ít nhất 3 số nguyên tố (đpcm)