Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1+1\right)\)
\(=n\cdot\left(n-1\right)\left(n+1\right)\)
Vì n; n-1; n+1 là 3 số nguyên liên tiếp
=> \(n\left(n-1\right)\left(n+1\right)⋮3\) (1)
Vì n; n-1 là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\) (2)
Từ (1) và (2)
=>\(n\left(n-1\right)\left(n+1\right)⋮6\)
Hay \(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)⋮6\)
Vậy....
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(A=n^2\left(n+2\right)+n\left(n+2\right)\)
\(=\left(n^2+n\right)\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\) chia hết cho 2 vì chứa tích 2 số nguyên liên tiếp
Mặt khác:\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3
Mà UCLN(2,3)=1 nên A chia hết cho 2.3=6
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
Vậy ta được điều phải chứng minh
n2 (n+1)+2n (n+1)
=n.(n+1)(n+2)
vì n;n+1 là 2 số nguyên liên tiếp nên n.(n+1) chia hết cho 2
n;n+1;n+2 là 3 số tự nhiên liên tiếp nên n.(n+1)(n+2) chia hết cho 3
=>n.(n+1)(n+2) chia hết cho 6
cần gấp ạ
\(B=n^2\left(n+2\right)+n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(B⋮6\)