Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)
\(=\frac{15}{24}x^8y^6\ge0\) với \(\forall x,y\)
TL:
=\(\frac{-3}{4}x^6y^2.\frac{-5}{6}x^2y^4\)
=\(\frac{5}{8}x^8y^6\)
mà\(\frac{5}{8}x^8y^6\ge0\forall x\in R\)
vậy.....
hc tốt
A= x^2-6x+10
A=x^2-3x-3x+9+1
A=x(x-3)-3(x-3)+1
A=(x-3)(x-3)+1
A=(x-3)^2+1
Vì (x-3)^2 \(\ge\)0\(\forall x\)
->(x-3)^2+1\(\ge\)1
=>ĐPCM
1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)
hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)
hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
\(x^4-x^3+2x^2-x+1=\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2+1\right)\)
Ta có: \(\left(x+1\right)^2\ge0;\forall x\)
\(x^2+1>1\); \(\forall x\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall x\)
Vậy \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0;\forall x\)
3L = -x2 + 6x - 15
= -(x - 3)2 - 6
=> L = \(\frac{-\left(x-3\right)^2}{3}-2\le-2\) \(\forall x\)