K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

\(VT=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(VT=a^2c^2+b^2d^2+a^2b^2+c^2d^2\)

\(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=VP\)

5 tháng 6 2016

Soory em mới học lớp 7

21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

7 tháng 11 2021

C

7 tháng 11 2021

c

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
5 tháng 8 2021

giups mình với nha

 

14 tháng 10 2023

B, C và D

14 tháng 10 2023

mấy cái đó là đúng hả bạn

 

17 tháng 9 2021

a) \(\left(a^2+b+c\right)^2\)

\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)

\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)

b) \(\left(a+b+c\right)^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ca+2bc+c^2\)

17 tháng 9 2021

a) (a^2+b+c)^2(a^2+b+c)^2

=(a^2+b)^2+2(a^2+b)c+c^2

=a^4+2a2b+b^2+2a2c+2bc+c^2

b) (a+b+c)^2(a+b+c)^2

=(a+b)^2+2(a+b)c+c^2

=a^2+2ab+b^2+2ca+2bc+c^2