K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)

=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)

=a3+b3+c3+3(a+b)(ab+c(a+b+c))

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)(a+c)(b+c)

14 tháng 6 2016

(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)

=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)

=a3+b3+c3+3(a+b)(ab+c(a+b+c))

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)(a+c)(b+c)

8 tháng 12 2016

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow2ab+2ac+2bc=0\)

\(\Rightarrow2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)

 

 

9 tháng 12 2016

thanks ạ

 

30 tháng 6 2016

Xét vế trái:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3a^2bc+3abc^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vậy: \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

(Nhớ k cho mình với nhá!)

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c