K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

giup minh cau nay 

n+3 chia hey cho n-1

4n+3 chia het cho 2n+1

12 tháng 12 2017

ababab có tổng các chữ số là (a+b).3

2019 có tổng chữ số là 2+1+9=12

Vì cả hai số đều là số chia hết cho 3 nên ababab+2019 chia hết cho 3

25 tháng 1 2021

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

1 tháng 11 2019

Ta có:ababab=abx10000+abx100+ab=abx10101\(⋮\)3

Vậy  ababab là bội của 3

10 tháng 4 2020

Ta có: ababab = ab.10000+ab.100+ab.1   

                        = ab.(10000+100+1)         

                        = ab.10101               

Mà : 10101 chia hết cho 3 (chỗ này bạn sử dụng dấu chia hết nhé!)      

Suy ra (còn chỗ này là dấu suy ra) :ab.10101 chia hết cho 3          

Vậy ababab chia hết cho 3                

Chúc bạn hc tốt nhá !! (^.^)

6 tháng 10 2017

ta có số ababab

để số ababab chia hết cho 3 \(\Leftrightarrow\)a+b+a+b+a+b \(⋮\)3

                                                     hay 3a+3b\(⋮\)3

                                                            3(a+b)\(⋮\)3 (luôn đúng)

vậy số ababab chia hết cho 3

15 tháng 1 2018

ababab=ab0000+ab00+ab
          = abx10000+abx100+abx1
           =abx(10000+100+1)
          =abx10101
ta có 10101 chia hết cho 3
nên abx10101 chia hết cho3
suy ra ababab là bội của 3

tk cho mk nha $_$

22 tháng 12 2016

Mình ko nhớ câu a) 2004000 

Nhắc lại lý thuyết: 
1. Trong khai triển số chính phương thành tích các thừa số nguyên tố mỗi ước nguyên tố được nâng lên lũy thừa chẵn. 
CM: n = p1^r1 * p2^r2 *... * pk^rk => n² = p1^(2r1) * p2^(2r2) * ... * pk^(2rk) 
2. Kết luận 1 ▲: Số chính phương chia hết cho p^(2k + 1) thì chia hết cho p^(2k + 2) 
CM: n² chia hết cho p^(2k + 1) => p là ước của n => n² = a*p^(2m) (do 1) => 2m > 2k + 1 (không có 2m = 2k + 1 vì số chẵn không thể bằng số lẻ. Không thể có 2m < 2k + 1 vì lúc đó n² không chia hết cho p^(2k + 1)) 
=> 2m ≥ 2k + 2 => n² chia hết cho p^(2k + 2) 
3. Kết luận 2 ♦: Nếu số n chia hết cho p^(2k + 1) nhưng không chia hết cho p^(2k + 2) thì không là số chính phương (vì nếu chính phương thì từ 2 => n chia hết cho p^(2k + 2), mâu thuẫn) 

4. Số chính phương lẻ là bình phương của số lẻ nên chia cho 4 dư 1 ((2k + 1)² = 4(k² + k) + 1) 
Kết luận: số lẻ chia cho 4 dư 3 không thể là số chính phương ♥ 

Trong các phát biểu trên p1, ..., pk, p là số nguyên tố, m và k nguyên 
--------------- 

b) n = (abcabc) = (abc) * 1000 + (abc) = (abc) * 1001 = (abc) * 7 * 11 * 13 
Nếu n chính phương thì n phải chia hết cho 7², 11², 13² (do ▲) => n chia hết cho 7² * 11² * 13² => (abc) chia hết cho 7*11*13 = 1001, là điều không thể. Vậy n không chính phương. 

c) n = (abba) = 1001a + 110b = 11*(143a + 10b) = 11² * (8a + b) + 11 * (3a - b) 
Nếu n chính phương thì n phải chia hết cho 11² (do chia hết cho 11), tức 3a - b phải chia hết cho 11 

Với a = 2, 3, 7, 8 dễ thấy n không chính phương (số chính phương chỉ tận cùng bằng, 0, 1, 4, 5, 6, 9) 

Với a = 1 đk cần để n chính phương là 3a - b = 3 - b phải chia hết cho 11, tức b = 3. Nhưng 1331 = 11³ không là số chính phương (do ♦ nhưng cũng do ♥ vì chia cho 4 dư 3 do 31 chia cho 4 dư 3). 

Với a = 4 đk cần để n chính phương là 3a - b = 12 - b phải chia hết cho 11, tức b = 1, nhưng số 4114 không là số chính phương do chia hết cho 2 nhưng không chia hết cho 2² (do ♦) vì 14 không chia hết cho 4 

Với a = 5 đk cần để n chính phương là 3a - b = 15 - b phải chia hết cho 11, tức b = 4, nhưng số 5445 không chính phương vì số chính phương tận cùng bằng 5 thì phải tận cùng bằng 25 

Với a = 6 đk cần để n chính phương là 3a - b = 18 - b phải chia hết cho 11, tức b = 7, nhưng số 6776 = 6800 - 24 = 17 * 4² *25 - 3*2³ do chia hết cho 2³ nhưng không chia hết cho 2^4 nên không chính phương (do ♦) 

Với a = 9 đk cần để n chính phương là 3a - b = 27 - b phải chia hết cho 11, tức b = 5, nhưng số 9559 không là số chính phương do chia chia cho 4 dư 3 (do ♥) vì 59 chia cho 4 dư 3 

=> số (abba) với a > 0 không là số chính phương. 

27 tháng 6 2017

\(\overline{ababab}=\overline{ab}.10101\)

Do  \(\overline{ab}⋮\overline{ab}\)

\(\Rightarrow\overline{ab}.10101⋮\overline{ab}\)

\(\Rightarrow\overline{ababab}⋮\overline{ab}\)