K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

12 tháng 2 2022

Ta có : \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2-b\left(a-c\right)\left(a+c-b\right)^2=0\left(1\right)\)

Đặt : \(\left[{}\begin{matrix}a+b-c=x\\b+c-a=y\\a+c-b=z\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=\dfrac{x+z}{2}\\b=\dfrac{x+y}{2}\\c=\dfrac{y+z}{2}\end{matrix}\right.\)

Khi đó ta có :

\(VT_{\left(1\right)}=\dfrac{x+z}{2}\left(\dfrac{x+y}{2}-\dfrac{y+z}{2}\right).y^2+\dfrac{y+z}{2}\left(\dfrac{x+z}{2}+\dfrac{x+y}{2}\right).x^2-\dfrac{1}{4}\left(x+y\right)\left(x-y\right).z^2\)

\(=\dfrac{x+z}{2}.\dfrac{x-z}{2}.y^2+\dfrac{y+z}{2}.\dfrac{z-y}{2}.x^2+\dfrac{1}{4}\left(x^2-y^2\right)z^2\)

\(=\dfrac{1}{4}\left(x^2-z^2\right).z^2-\dfrac{1}{4}\left(x^2-y^2\right).z^2=0\left(đpcm\right)\)

 

23 tháng 7 2019

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c

7 tháng 12 2019

????

Đề bài chứng minh j z bn?

7 tháng 12 2019

nhầm =0