\(\ge\)4a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

#)Giải :

Áp dụng BĐT Cauchy 2 số :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\left(đpcm\right)\)

25 tháng 7 2019

Với mọi a, b, c, d

ta có: \(0\le\left(a^2-b^2\right)^2=a^4-2a^2b^2+b^4\)

=> \(a^4+b^4\ge2a^2b^2\)

tương tự: \(c^4+d^4\ge2c^2d^2\)

\(a^2b^2+c^2d^2\ge2abcd\)

=> \(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2c^2d^2=2\left(a^2b^2+c^2d^2\right)\ge4abcd\)

Vậy ta có điều cần phải chứng minh.

28 tháng 4 2017

Áp dụng bất đẳng thức cauchy ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)

Vậy \(a^4+b^4+c^4+d^4\ge4abcd\)

28 tháng 4 2017

Áp dụng BĐT cô-si cho 2 số không âm ta có:

a4+b4\(\ge\)2a2b2

c4+d4\(\ge\)2c2d2

=>a4+b4+c4+d4\(\ge\)2(a2b2+c2d2)(1)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\end{matrix}\right.\)

Áp dụng BĐT coossi cho 2 số không âm ta có:

a2b2+c2d2\(\ge\)2abcd

=>(1) tương đương a4+b4+c4+d4\(\ge\)4abcd

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}ab=cd\\a^2=b^2\\c^2=d^2\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=-b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}-a=b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}a=b\\c=d\end{matrix}\right.\)

Vậy...

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

5 tháng 5 2019

Áp dụng bất đẳng thức Cô-si cho các số dương \(a^4,b^4,c^4,d^4\), ta có:

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}\)

\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2\cdot2c^2d^2}=2\cdot2\left|abcd\right|=4\left|abcd\right|\ge4abcd\)

Dấu "=" khi a = b = c = d.

Cách khác áp dụng cho 4 số luôn:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\).

Vậy......................

5 tháng 5 2019

Áp dụng BĐT Cô-si ta có:

a4 + b4 ≥ 2a2b2

c4 + d4 ≥ 2c2d2

⇒ a4 + b4 + c4 + d4 ≥ 2a2b2 + 2c2d2

⇔ VT ≥ 2\(\sqrt{4\text{a}^2b^2c^2d^2}\) = 4abcd = VP

Vậy a4 + b4 + c4 + d4 ≥ 4abcd

5 tháng 4 2019

a)

\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương

=> ĐPCM

b) Ta có

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)

\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0

\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)

Các phép biến đổi là tương đương => ĐPCm

5 tháng 4 2019

\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)

\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)

\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)

\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)

\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra

<=> a=b

\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)

\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> a=b

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
 

12 tháng 11 2017

Chứng minh bđt phụ :

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)

Áp dụng bđt (*), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)

Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Dấu = xảy ra khi a=b=c     

Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1