K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

a4 + b4 + 2 \(\ge\) 4ab

\(\Leftrightarrow\) a4 + b4 + 2 - 4ab \(\ge\) 0

\(\Leftrightarrow\) a4 - 2a2 + 1 + b4 - 2b2 + 1 + 2a2 + 2b2 - 4ab \(\ge\) 0

\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a2 - 2ab + b2) \(\ge\) 0

\(\Leftrightarrow\) (a2 - 1)2 + (b2 - 1)2 + 2(a - b)2 \(\ge\) 0 (Với mọi giá trị a, b)

Vậy a4 + b4 + 2 \(\ge\) 4ab

Chúc bn học tốt!!

31 tháng 3 2018

\(a^4+b^4+2\ge4ab\)

\(\Leftrightarrow a^4-2a^2b^2+b^4+2a^2b^2-4ab+2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0^{\left(1\right)}\)

\(^{\left(1\right)}\) đúng vậy ta có đpcm

31 tháng 3 2018

C1: a^4 + b^4 + 2 ≥ 4ab
<=> a^4 - 2a^2 + 1 + b^2 - 2b^2 + 1 + 2a^2 + 2b^2 + 4ab
<=> (a^2 - 1)^2 + (b^2 -1)^2 + 2( a^2 -2ab+ b^2)
<=> (a^2 -1)^2 + (b^2 -1)^2 + 2(a-b) >= 0 (với mọi a, b)
Vậy nên a^4 + b^4 + 2 ≥ 4ab (với mọi số nguyên a, b)

C2:Xét (a + b)^2 - 4ab
= a^2 + 2ab +b^2 - 4ab = a^2 - 2ab + b^2 = (a-b)^2 >= 0
=> (a+b)^2 >= 4ab
Mà ta có:
a^4 + b^4 + 2 - (a+b)^2
= a^4 + b^4 +2 -a^2 - b^2 - 2ab
=a^4 - 2a^2 + 1 + a^2 + b^4 - 2b^2 +1 + b^2 - 2ab
= (a^2 - 1)^2 + (b^2 - 1)^2 + (a-b)^2 >= 0
=> a^4 + b^4 +2 >= (a+b)^2
=> a^4 + b^4 +2 >= 4ab

bạn thấy cánh nào dễ hơn thì chọn nha

10 tháng 8 2016

a) VP= (a-b)^2 + 4ab 

= a^2 - 2ab + b^2 + 4ab

= a^2 + 2ab + b^2 

= (a+b)^2 = VT

Vậy ...

b) VP= (a+b)^2 - 4ab 

= a^2 + 2ab + b^2 - 4ab

= a^2 - 2ab + b^2

= (a-b)^2 = VT

Vậy....

c) VP= (a+b)^3 - 3ab (a+b) 

= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2 

= a^3 + b^3  = VT

Vậy ....

10 tháng 8 2016

a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

Vậy: (a+b)2 = (a-b)2 + 4ab.

b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy: (a-b)2 = (a+b)2 - 4ab

c) Ta có:  \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)

Đúng nha!!

8 tháng 6 2017

Nguyễn Mộc Hạ Chi

Áp dụng:

a) Tính (a – b)2 , biết a + b = 7 và a . b = 12.

b) Tính (a + b)2 , biết a - b = 20 và a . b = 3.

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2  +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

 = (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2  +2ab + b2 – 4ab

= a– 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a)    (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b)    (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

8 tháng 6 2017

412 nha suy nghĩ mãi

24 tháng 9 2020

Câu 1:

A=x^2- y^2=(x-y)(x+y)

Thay x=17, y=13 vào A, ta có: A= (17-13)(17+13)=4.30=120

=> Vậy A=120 tại x=17,y=13.

b, B= (2+1)(22+1)(24+1)(28+1)(216+1) (đề bài đúng)

      = 1.(2+1)(22+1)(24+1)(28+1)(216+1) 

      = (2-1)(2+1)(22+1)(24+1)(28+1)(216+1) 

      = (22-1)(22+1)(24+1)(28+1)(216+1) 

      = (24-1)(24+1)(28+1)(216+1) 

      = (28-1)(28+1)(216+1) 

       = (216-1) (216+1)

       = 232-1

=> B= = 232-1

       

      

Bài 1 :

a,Ta có :

\(A=x^2-y^2\)

\(=\left(x-y\right)\left(x+y\right)\)

Với x = 17 và y = 13 ta có :

\(A=\left(17-13\right)\left(17+13\right)\)

\(=4.30\)

\(=120\)

Vậy x = 120 với x = 17 và y = 13 .

b, Nhân biểu thức đã cho với ( 2 - 1 ) ta được :

\(\left(2-1\right)B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow\left(2-1\right)B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow1.B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow B=2^{32}-1\)

13 tháng 9 2015

ta có :a)     (a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2                                                                                                                      b)      (a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2=(a-b)2                                                                                Áp dụng:  (a-b)2=(a+b)2-4ab=72-4.12=1               (a+b)2=(a-b)2+4ab=202+4.3=412

13 tháng 9 2015

GG

1 tháng 8 2016

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

1 tháng 8 2016

Chứng minh rằng các biểu thức sau luôn dương với mọi x

a) a+ b2 + 2 - 4ab         (>= 0)

b) (x-1)(x-3)(x-4)(x-6)+9             (>=0)

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

QT
Quoc Tran Anh Le
Giáo viên
3 tháng 7 2019

C1: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\) (đpcm)

C2: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)

\(\Leftrightarrow12x+13=49\)

\(\Leftrightarrow12x=36\)

\(\Leftrightarrow x=3\)

Vậy x = 3.

3 tháng 7 2019

Câu 1 :

\(\left(a+b\right)^2-\left(a-b\right)^2\)

= \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)

= \(a^2+2ab+b^2-a^2+2ab-b^2\)

= \(\left(a^2-a^2\right)+\left(2ab+2ab\right)+\left(b^2-b^2\right)\)

= \(4ab\)

Vậy................(đpcm)

16 tháng 7 2017

\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)(2)

từ (1) và (2) => đpcm

  

\(\left(a-b\right)^2=a^2-2ab+b^2\)(3)

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)(4)

từ (1) và (2) => đpcm

25 tháng 10 2017

a) (a + b)4

= [(a + b)2]2

= (a2 + 2ab + b2)2

= [(a2 + 2ab) + b2]2

= (a2 + 2ab)2 + 2(a2 + 2ab)b2 + b4

= a4 + 4a3b + 4a2b2 + 2a2b2 + 4ab3 + b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4

vậy (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

con a bn chép sai đề bài nên mk sử rồi nhé

b) (a + b)5

= (a + b)2 . (a + b)3

= (a2 + 2ab + b2)(a3 + 3a2b + 3ab2 + b3)

= a5 + 3a4b + 3a3b2 + a2b3 + 2a4b + 6a3b2 + 6a2b3 + 2ab4 + a3b2 + 3a2b3 + 3ab4 + b5

= a5 + (3a4b + 2a4b) + (3a3b2 + 6a3b2+ a3b2) + (a2b3 + 6a2b3 + 3a2b3) + (2ab4 3ab4) + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

25 tháng 10 2017

hình như sai đề câu a