Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + b2 + 3 > ab + a + b
<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b
<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0
<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện
ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) với mọi a, b, c
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge ab+bc+ac+2ab+2bc+2ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0
luôn đúng với mọi a;b;c
suy ra ĐPCM
ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)
<=> \(a^2+b^2+c^2\ge ab+bc+ca\)
mình hướng dẫn nhé, muộn rồi, ko alfm kịp,
câu a nhân 2 vế với 2, chuyển vế đổi dáu => đpcm
cậu b chuyển vế đổi dấu ok
câu a
\(a^2+b^2+1\ge ab+a+b\left(1\right)\\ < =>2a^2+2b^2+2\ge2ab+2a+2b\\ < =>a^2-2a+1+a^2-2ab+b^2+b^2-2b+1\ge0\\ < =>\left(a-1\right)^2+\left(a-b\right)^2+\left(b-1\right)^2\ge0\left(\cdot\right)\)
có
\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(a-b\right)^2\ge0\left(\forall a,b\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\end{matrix}\right.\)
=> (.) luôn đúng với mọi a và b
=>(1) luôn đúng
dấu bàng xảy ra khi a = b =1
câu b (sửa lại thành >= nhé)
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\left(1\right)\\ < =>a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\\ < =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\left(\cdot\right)\)
có
\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\\\left(c-1\right)^2\ge0\left(\forall c\right)\end{matrix}\right.\)
=>(.) luôn đúng
=> (1) luôn đúng
dấu = xảy ra khi a = b = c = 1
xong, chúc may mắn :)
Ta chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\)
Thực vậy, BĐT tương đương:
\(a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a; b dương)
Vậy BĐT được chứng minh
Tương tự ta có: \(b^3+c^3\ge bc\left(b+c\right)\); \(c^3+a^3\ge ca\left(c+a\right)\)
Cộng vế với vế:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Rightarrow\frac{a^3+b^3+c^3}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2\left(a^3+b^3+c^3\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 1 :
Ta có :
\(a^2+b^2\ge2ab\)
\(;a^2+1\ge2a\)
\(;b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+a^2+b^2+2\ge2ab+2a+2b\)
\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Bài 2 :
\(A=x^2-6x+10=\left(x-3\right)^2+1>0\) với mọi x
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x
a) giả sử a^2-ab+b^2>/ab
<=> a^2-ab+b^2-ab>/0
<=> a^2-2ab+b^2>/0
<=> (a-b)^2>/0 (đúng với mọi a,b)
vậy a^2-ab+b^2>/ab
b) giả sử (a+b)^2.(a-b)^2>/4ab(a-b)^2
<=> (a+b)^2(a-b)^2-4ab(a-b)^2>/0
<=> (a-b)^2(a^2+2ab+b^2-4ab)>/0
<=> (a-b)^2(a-b)^2>/0
<=> (a-b)^4>/0 (đúng với mọi a,b)
vậy (a+b)^2(a-b)^2>/4ab(a-b)^2
Lời giải:
$a^2+b^2+1011-(ab+a+b)=\frac{2a^2+2b^2+2022-2ab-2a-2b}{2}$
$=\frac{(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)+2020}{2}$
$=\frac{(a-b)^2+(a-1)^2+(b-1)^2+2020}{2}$
$\geq \frac{2020}{2}>0$
$\Rightarrow a^2+b^2+1011> ab+a+b$
Ta có đpcm.