K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cauchy hoặc biến đổi tương đương đều được nhé.

ĐK: \(ab\ne0\)

\(a^2+\dfrac{1}{a^2}-2=\dfrac{a^4-2a^2+1}{a^2}=\dfrac{\left(a^2-1\right)^2}{a^2}\ge0\)

\(\Leftrightarrow a^2+\dfrac{1}{a^2}\ge2\) \(\forall a\in R,a\ne0\)

Tương tự và cộng theo vế có đpcm. Đẳng thức xảy ra khi \(a=b=1\)

 

25 tháng 2 2018

(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3

31 tháng 3 2018

Liên hệ giữa thứ tự và phép nhân

AH
Akai Haruma
Giáo viên
2 tháng 4 2018

Lời giải:

Xét hiệu \(a^2+b^2-2ab=(a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^2+b^2\geq 2ab\)

\(\Rightarrow 2(a^2+b^2)\geq (a+b)^2\)

\(\Leftrightarrow 2(a^2+b^2)\geq 1\Leftrightarrow a^2+b^2\geq \frac{1}{2}\)

Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

nguyễn thị thùy trang: có hai dấu suy ra thôi mà bạn, ý bạn là dấu suy ra ở dòng thứ 3 hả?

$a^2+b^2\geq 2ab$

$\Rightarrow a^2+b^2+a^2+b^2\geq a^2+b^2+2ab$

hay $2(a^2+b^2)\geq (a+b)^2$

Là vậy đó.

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

18 tháng 8 2019

a) \(5x^2-4x=9\)

\(5x^2-4x-9=0\)

\(5x^2+5x-9x-9=0\)

\(5x\left(x+1\right)-9\left(x+1\right)=0\)

\(\left(x+1\right)\left(5x-9\right)=0\)

\(\hept{\begin{cases}x+1=0\\5x-9=0\end{cases}}\)

\(\hept{\begin{cases}x=-1\\x=\frac{9}{5}\end{cases}}\)

18 tháng 8 2019

b) \(4x^2-2x+\frac{1}{4}\) với x = 0,25

Thay x = 0,25 vào biểu thức, ta có:

\(4.\left(0,25\right)^2-2.\left(0,25\right)+\frac{1}{4}=0\)

1 tháng 2 2020

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

18 tháng 8 2019

Bài 2:

a)20182+4.2018-202+4

=2018.2018+4.2018-404

=2018.(2018+4)-404

=2018.2022-404

=4 079 992

18 tháng 8 2019

Bài 1:

a)5x2-4x=9

5.x.x-4.x=9

3x.(5-4)  =9

 3x.1       =9

 3x          =9:1

 3x          =9

  x           =9:3

  x            =3

NV
7 tháng 2 2020

\(VT=1+2ab+a^2b^2+1+2cd+c^2d^2+a^2c^2+b^2d^2\)

\(=a^2b^2+2abcd+2c^2d^2+2\left(ab+cd\right)+a^2c^2-2abcd+b^2d^2+2\)

\(=\left(ab+cd\right)^2+2\left(ab+cd\right)+1+\left(ac-bd\right)^2+1\)

\(=\left(ab+cd+1\right)^2+\left(ac-bd\right)^2+1\ge1\)

2 tháng 10 2019

Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

24 tháng 3 2018

Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2>2\left(đpcm\right)\)