K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)

\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)

Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)

Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)

\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)

Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)

20 tháng 7 2021

mình ko biết câu này nha

20 tháng 7 2021

A=1/2-2/2+3-4/2+....+99/2 -100/2

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

14 tháng 11 2018

1)A=987

8 tháng 4 2016

Đơn giản!Cô Huệ gợi ý làm được rồi