K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a) Ta có: n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp

Vì tích của 2 số tự nhiên liên tiếp thì chia hết cho 2

    tích của 3 số tự nhiên liên tiếp thì chia hết cho 3

\(\Rightarrow\)n(n+1)(n+2) chia hết cho 3 và 2.

b) n(n+1)(2n+1) = n(n+1)(n+2+n-1) = n(n+1)(n+2) + n(n+1)(n-1)

Vì n(n+1)(n+2) là tích 3 số tự nhiên liến tiếp \(\Rightarrow\)n(n+1)(n+2) chia hết cho 2 và 3 (theo chứng minh trên) (1)

n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp \(\Rightarrow\)n(n+1)(n-1) chia hết cho 2 và 3 (2)

Từ (1) và (2) \(\Rightarrow\)n(n+1)(2n+1) chia hết cho 2 và 3 (tính chất chia hết của một tổng)

8 tháng 10 2016

mình biết cách làm

đó mai mình 

chỉ cho nhé vì

mình cũng làm bài

này nhiều rùi

16 tháng 10 2016

Bài này mik cũng làm nhiều rùi nè

27 tháng 9 2016

a. Xét n chẵn 

=> n + 10 chẵn

=> (n + 10) (n + 15) chẵn => chia hết cho 2

Xét n lẻ

=> n + 15 chẵn 

=> (n + 10) (n + 15) chẵn => chia hết cho 2

Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n

b. n (n + 1) (n + 2)

=> n + n + 1 + n + 2 

=> 3n + 3 

Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3

=> 3n + 3 chia hết cho 3

Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2

Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2

Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.

c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n

Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2

27 tháng 9 2016

ra đề dễ đi

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 

14 tháng 10 2018

tớ ko chắc nữa n là 1 số chẵn và 1 số lẽ

14 tháng 10 2018

a) vì n thuộc N, ta có:

TH1: n là số lẻ

=> n+15 là số chẵn => n+15 chia hết cho 2=> (n+10).(n+15) chia hết cho 2

TH2: n là số chẵn

=> n+10 là số chẵn=> n+10 chia hết cho 2=> (n+10).(n+15) chia hết cho 2

Vậy với mọi n thuộc N => (n+10).(n+15) chia hết cho 2

b) vì n thuộc N

=> n, n+1, n+2 là 3 số tự nhiên liên tiếp => một trong ba số chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3

xét TH1: n là số lẻ

=> n+1 là số chẵn => n+1 chia hết cho 2=>n.(n+1).(n+2)  chia hết cho 2

xét TH2: n là số chẵn 

=> n+2 và n là số chẵn => n chia hết cho 2, n+2 chia hết cho 2=>n.(n+1).(n+2)  chia hết cho 2

vậy với mọi n thuộc N thì n.(n+1).(n+2)  chia hết cho 2,3