K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2015

đ                                           

30 tháng 1 2016

mình ko biết

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

13 tháng 8 2017

Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

13 tháng 8 2017

sai rồi bạn ơi mik làm đc rồi

18 tháng 10 2017

Thay ab+bc+ac = 1 vào Q

18 tháng 10 2017

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)

27 tháng 2 2021

#TK:

giả sử căn 15 không phải là số vô tỉ => căn 15 là số hữu tỉ=> căn 15 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 15 là số hữu tỉ nên có thể viết dưới dạng a/b) => a^2/b^2= 15=> a^2 =15b^2vì a, b là hai so nguyen to cung nhau nên để a^2=15b^2 thì a^2 phải chia het cho 15mà 15 la so nguyen tố => a chia het cho 15 => a có dạng a=15kTa lại có : a^2=15b^2 => 225k^2 = 15b^2 => b^2=15k^2 tương tự ta => b chia hết cho 15ta có a và b đều chia het cho 15 trái với giả thiết a, b la hai số nguyen to cung nhau => ta có đpcm 

27 tháng 2 2021

Căn 15 là số vô tỉ mà bạn