K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

\(a^2+2=3^{4032}+4\cdot3^{2016}+4+2\)

chia hết cho 3

\(\Rightarrow dpcm\)

the cũng không biết

9 tháng 11 2014

ta có abccba+22=100001a+10010b+1100c+22.

Ta thấy 100001a chia hết cho 11 (100001=11x9091)

            10010b chia hết cho 11 (10010=11x910)

             1100c chia hết cho 11

             22 chia hết cho 11

Vậy abccba+22 chia hết cho 11 nên nó là hợp số.

1 tháng 11 2016

chung to B = 8^2 + 2^20 chia het cho 17

11 tháng 1 2018

Cũng thế nhưng xét trực tiếp 3 số khác: 
* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

11 tháng 1 2018

* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

bif03jpa1gms_500

12 tháng 12 2015

Câu hỏi tương tự, tick nha Tran Thi Xuan

12 tháng 12 2015

vào câu hỏi tương tự đó bạn

3 tháng 6 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)

- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6  \(⋮\) 3 là hợp số (loại)

- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)

=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)

3 tháng 6 2017

sửa dòng cuối: 21k + 15 \(⋮\)3 là hợp số (đpcm)

16 tháng 6 2016

a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

16 tháng 6 2016

p<p+4 nguyen to => p<p+4 dang 3k +1

=>p+8 dang 3k+9

3k chia het cho 3

9 chia het cho 3 

=> 3k +9 là hợp số =>p +8 là hợp số