Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
a) Sửa đề:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)
Ta có:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ
= 5ⁿ.(5² + 5 + 1)
= 5.31 ⋮ 31
Vậy A ⋮ 31
b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺² - 2ⁿ
= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)
= 3.10 + 2ⁿ⁻¹.2.5
= 10.(3 + 2ⁿ⁻¹) ⋮ 10
Vậy B ⋮ 10
(5n + 2)2 - 4 = 10n + 4 - 4 = 10n chia hết cho 5 với mọi số nguyên
(5n +2)x2-4=5nx2+2x2-4
= 10n + 4-4
= 10n + 0
= 10n ; 10n chia hết cho 5
vậy vs mọi n thì (5n+2)2-4 chia hết cho 5
ủng hộ nhé
Chúng minh rằng :
a) ( 5n )^100 chia hết cho 125
( 5n )^100 = ( 5n )^2 .50
= ( 5n . 5 . 5)^50
= ( 5 . 5 . 5 . n )^50
= ( 125n )^50 chia hết cho 125
b) 8^8 + 2^20 chia hết cho 17
8^8 + 2^20
= ( 2^3 )^8 + 2^20
= 2^24 + 2^20
= 2^20 . 2^4 + 2^20 . 1
= 2^20 . 16 + 2^20 . 1
= 2^20 . ( 16 + 1 )
= 2^20 . 17 chia hết cho 17
Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1 (k\(\in\)N*)
Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)
=10x2k2+10x6k+30k+80
=10x2k2+10x6k+10x3k+10x8
=10(2k2+6k+3k+8) chia hết cho 10
Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)
=(10k+10+15)(2k+7)
=10x2kk+10x7k+10x2k+10x7+30k+105
=10(2kk+7k+2k+7+2k)+105
Vì 10(2kk+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10
 \(\Rightarrow\) 105 chia hết cho 10
Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10
Ta có: \(8^{n+2}+8^n-5^{n+2}-5^n\)
\(=8^n\left(64+1\right)-5^n\left(5^2+1\right)\)
\(=8^n\cdot65-5^{n-1}\cdot130⋮65\)
Ta có: \(n^3+5n=n^3-n+6n=n\left(n^2-1\right)+6n=n\left(n-1\right)\left(n+1\right)+6n\)Vì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> \(n^3+5n\) chia hết cho 6 (đpcm)
\(CM:a=5^{n+2}+5^{n+1}+5^n⋮31\)
\(a=5^{n+2}+5^{n+1}+5^n\)
=> \(a=5^n.5^2+5^n.5+5^n\)
=> \(a=5^n\left(5^2+5+1\right)\)
=> \(a=5^n.31\)
Vì \(31⋮31\)=> \(5^n.31⋮31\)
=> \(a⋮31\)(\(đpcm\))
a = 5\(^{n+2}\) + 5\(^{n+1}\)+5\(^n\)
= 5\(^n\) .5\(^2\) + 5\(^n\).5 + 5\(^n\)
= 5\(^n\) ( 5\(^2\) +5+1)
= 5\(^n\)(25+5+1) = 5\(^n\) .31 \(⋮\) 31