K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

12 tháng 11 2021

Anh là ân nhân cứu mạng của em :33

12 tháng 11 2021

Chứng minh rằng: A = 3^2 + 3^3 + 3^4 + 3^5 + … + 3^2020 + 3^2021 chia hết cho 36 - Hoc24

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

29 tháng 11 2021

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13

 

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

32 phút trước

B = (3^2023 - 3^2022) + (3^2021 - 3^2020) + ... + (3 - 1)
= 3^2022(3 - 1) + 3^2020(3 - 1) + ... + 1(3 - 1)
= 2(3^2022 + 3^2020 + ... + 1)
Đặt: A = 3^2023 + 3^2021 + ... + 3 B = 3^2022 + 3^2020 + ... + 1
Ta có: B = A - 3^2022 A = 3B
=> 2B = A
Mặt khác: A + B = 3^2023 + 3^2022 + 3^2021 + ... + 3 + 1 Đây là tổng của một cấp số nhân với công bội là 3.
=> A + B = (3^2024 - 1) / 2
Từ đó suy ra: B = (A + B) / 2 - A = (3^2024 - 1) / 4 - A
= (3^2024 - 1 - 4A) / 4
 

  • Nhóm 5 số hạng liên tiếp: Ta sẽ nhóm B thành các nhóm 5 số hạng liên tiếp. Mỗi nhóm sẽ có dạng: 3^k - 3^(k-1) + 3^(k-2) - 3^(k-3) + 3^(k-4) = 3^(k-4)(3^4 - 3^3 + 3^2 - 3 + 1) = 3^(k-4) * 61

  • Phân tích:

    • Ta thấy 61 không chia hết cho 5.
    • Tuy nhiên, khi nhân 61 với các lũy thừa của 3, ta sẽ luôn thu được một số có chữ số tận cùng là 3.
    • Khi trừ đi các số hạng tiếp theo (3^(k-1), 3^(k-2), ...), chữ số tận cùng của kết quả vẫn sẽ là 3 hoặc 8 (do 3 - 1 = 2, 8 - 1 = 7).
    • Quan trọng: Không có số nào có chữ số tận cùng là 3 hoặc 8 mà chia hết cho 5.

Kết luận:

  • Từ phân tích trên, ta thấy mỗi nhóm 5 số hạng liên tiếp khi cộng lại sẽ không chia hết cho 5.
  • Do đó, B cũng sẽ không chia hết cho 5.

Kết luận chung:

  • Chúng ta đã chứng minh được B chia hết cho 2.
  • Tuy nhiên, B lại không chia hết cho 5.
12 tháng 10 2021

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2019}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{2019}\right)⋮3\)

12 tháng 10 2021

\(A=2+2^2+2^3+...+2^{2020}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2019}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{2019}.3\)

\(=3\left(2+2^3+...+2^{2019}\right)⋮3\)