![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=2+22+23+...+260
A=(2+22+23)+...+(258+259+260)
A=12.1+...+257.(2+22+23)
A=12.1+...+257.12
A=12.(1+...+257)chia hết cho 3 vì 12 chia hết cho 3
tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm
![](https://rs.olm.vn/images/avt/0.png?1311)
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
![](https://rs.olm.vn/images/avt/0.png?1311)
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
![](https://rs.olm.vn/images/avt/0.png?1311)
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (2+2^2) + (2^3+2^40+....+(2^59 + 2^60)
= 2.1 + 2.2 + 2^3.1 + 2^3.2+....+2^59.1 + 2^59.2
= 2.(1+2)+2^3(1+2)+....+2^59(1+2)
= 3.(2+2^3+2^59)
Vậy A chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Nguyễn Nhật Loan - Toán lớp 6 - Học toán với OnlineMath
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
A = 2 . ( 1+2 ) + 23 . (1+2) + ... + 259 . (1+2)
A = 2.3 + 23.3 + ... + 259.3
A = (2+23+...+259) . 3
vì 3 chia hết cho 3 suy ra A chia hết cho 3
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)