Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
\(2^{2020}-2^{2017}\\ =2^{2017}\cdot2^3-2^{2017}\cdot1\\ =2^{2017}\left(2^3-1\right)\\ =2^{2017}\cdot7\)
Chia hết cho 7
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
a)Ta có:
S = 2 + 22 + 23 +........+ 2100
=> S = (2+23) + (22+24) +............+ (298+2100)
S = 2(1+22) + 22(1+22) +.......... + 298(1+22)
S = (1+22).(2+22+.......+298)
S=5.(2+22+.......+298) chia hết cho 5 (đpcm)
Vậy S chia hết cho 5
b) Ta có
4a+3b=4a+7b-4b=4(a-b)+7b
Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7
=>4a+3b chia hết cho 7(đpcm)
Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.
Bạn Đúc giúp người kiểu giì đấy :))) , giúp mà không giúp hết à ???
a) 2x + 2020 2021
=> 2x = 2021 - 2020
=> 2x = 1
=> 2x = 20
=> x = 0
b) Ta có :
4x + 14 ⋮ x + 2
=> 4. ( x + 2 ) + 6 ⋮ x + 2
Mà 4 . ( x + 2 ) ⋮ x + 2
=> 6 ⋮ x + 2 => x + 2 ∈ { 1 ; 2 ; 3 ;6 }
=> x ∈ { 0 ; 1 ; 4 } ( do x ∈ N )
c) ( x - 3 )2021 - ( x - 3 )5 = 0
=> ( x - 3 )5 . [ ( 2 - 3 )2016 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^5=0\\\left(x-3\right)^{2016}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{2016}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x-3\in=\left\{-1;1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x\in=\left\{2;4\right\}\end{cases}}\)
a) 2x = 2021 - 2020
2x = 1
\(\Rightarrow\)2x = 10
\(\Rightarrow\)x = 0
ta có: \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Leftrightarrow4A=1.4+4.4+4^2.4+4^3.4+...+4^{99}.4\)
\(\Leftrightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Leftrightarrow4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{99}\right)\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow3A=B-1\)
\(\Leftrightarrow A=\frac{B-1}{3}\)
Mà:\(\frac{B-1}{3}< \frac{B}{3}\)
Nên:\(A< \frac{B}{3}\)
+) Ta có \(2^{20}=\left(2^{10}\right)^2=1024^2=\overline{...76}\).
Ta thấy \(\overline{...76}.\overline{...76}=\overline{...76}\).
Do đó \(2^{2020}=\left(2^{20}\right)^{101}=\overline{...76}\).
+) Ta có \(3^{20}=\left(3^{10}\right)^2=\left(59049\right)^2=\overline{...01}\).
Ta thấy \(\overline{...01}.\overline{...01}=\overline{...01}\).
Do dó \(8.3^{2021}=\left(3^{20}\right)^{101}.24=\overline{...01}.24=\overline{...24}\).
Vậy \(8.3^{2021}+2^{2020}=\overline{...76}+\overline{...24}=\overline{...00}⋮100\).