K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
27 tháng 9 2019
Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)
Khi đó :
\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)
\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)
Vậy \(n^2-10⋮13\left(đpcm\right)\)
Chúc bạn học tốt !!!
TA
4
NM
0
30 tháng 7 2017
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm