\(7^{2n+1}-48n-7\)chia hết cho 288 với mọi n thuộc N

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Mình chứng minh theo phương pháp quy nạp
- Với n=1 thì phương trình ra 288 sẽ chia hết 288
- Với n=k => 7png.latex?^(2k+1) -48k - 7 chia hết 288
Chứng minh với n=k+1 thì đẳng thức chia hết 288
Thế n bằng k+1
png.latex?7^(2k+3)%20-48k-55 =png.latex?7^(2k+1).7^2%20-48k.7^2%20-7.7^2%20+2304k%20+288
png.latex?\Leftrightarrow%207^2.(7^(2k+1)%20-48k%20-7%20)%20+2304k%20+288
png.latex?\Leftrightarrow%207^2.(7^(2k+1)%20-48k%20-7%20) chia hết 288 ( chứng minh phần n=k)
2304 chia hết 288 => 2304k chia hết 288
288 thì chia hết 288
=> đẳng thức đúng với n=k+1
=> Dpcm

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

26 tháng 6 2017

Với n = 0

\(\Rightarrow3.5^{2.0+1}+2^{3.0+1}=3.5+2=15+2=17⋮17\Rightarrow\)đúng với n = 0

Giả sử \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k \(\in\) N*

\(\Rightarrow3.5^{2k+1}+2^{3k+1}⋮17\)

C/m : \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k + 1 ( k \(\in\) N* )

Ta có :

\(3.5^{2n+1}+2^{3n+1}=3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}\)

\(=3.25.5^{2k+1}+8.3^{3k+1}=3.25.5^{2k+1}+25.2^{3k+1}-17.2^{3k+1}\)

\(=25\left(3.5^{2k+1}+2^{3k+1}\right)-17.2^{3k+1}\)

Vì : \(17.2^{3k+1}⋮17\) ; \(3.5^{2k+1}+2^{3k+1}⋮17\) theo phương pháp quy nạp

\(\Rightarrow3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}⋮17\)

Vậy ...

14 tháng 7 2015

22 đồng dư với 1 (mod 3)

=> (22)n đồng dư với 1 (mod 3)

=>22n +1 đồng dư với 2 (mod 3) => 22n+1 = 3k + 2

=> 23k+2 = 23k.2 2

Vì 23 đồng dư với 1 mod 7 => 23k đồng dư với 1 mod 7 => 23k .22 đồng dư với 4 mod 7 

=> A = 23k+2 + 3 đồng dư với (4 + 3) = 7 mod 7 

=> A chia hết cho 7

15 tháng 10 2017

Đề sai rồi: bạn lấy n=0 thì 32+612=2176782345 không chia hết cho 11