K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Ta có:

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)

Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)

=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\) 

=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\)   (2)

Từ (1) và (2)

=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)

=> A<2

 

 

17 tháng 8 2016

ê bài này ở đâu tek

21 tháng 4 2016

ta có :\(\frac{1}{5^2}<\frac{1}{4.5}\)

 \(\frac{1}{6^2}<\frac{1}{5.6}\)

\(\frac{1}{7^2}<\frac{1}{6.7}\)

.....

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

                \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)     (1)

Ta có : \(\frac{1}{5.6}<\frac{1}{5^2}\)'

\(\frac{1}{6.7}<\frac{1}{6^2}\)

....\(\frac{1}{100.101}<\frac{1}{100^2}\)

\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\) <A 

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\) <A

\(\frac{1}{5}-\frac{1}{101}\) <A

mà \(\frac{96}{5.101}=\frac{96}{505}>\frac{96}{576}\)

hay \(A>\frac{1}{6}\)                                     (2)
từ (1); và (2) suy ra \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+..+\frac{1}{100^2}<\frac{1}{4}\) (đpcm)

đây là cách dễ hiểu nhất nhé

21 tháng 4 2016

bài này dễ lắm 8h30'  mình giải cho đang bận

5 tháng 9 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 => đpcm

11 tháng 2 2016

1/5^2< 1/4.5=1/4-1/5 
1/6^2<1/5.6=1/5-1/6 
.. 
1/99^2<1/98.99=1/98-1/99 
1/100^2<1/99.100=1/99-1/100 
Cộng vế theo vế, đơn giản: 

=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4 

** 
1/5^2> 1/5.6=1/5-1/6 
1/6^2>1/6.7=1/6-1/7 
1/99^2>1/99.100=1/99-1/100 
1/100^2>1/100.101=1/100-1/101 
Cộng vế theo vế, đơn giản: 
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6 
Vậy: 
1/6<1/5^2+1/6^2+...+1/100^2<1/4.

 

19 tháng 9 2017

6/6 vì 6/6 lớn hơn 5/6 và bế hơn 50