Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21\)
Vì \(5^3.21\) chia hết cho 7 nên \(5^5-5^4+5^3\) chia hết cho 7(đpcm)
b, Ta có:
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)
Vì \(7^4.55\) chia hết cho 11 nên \(7^6-7^5+7^4\) chia hết cho 11(đpcm)
Chúc bạn học tốt!!!
a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)
\(\Rightarrowđpcm\)
b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
a) 55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
b) 76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
c) 109+108+107=107.(102+101+100)=(5.2)7.(100+10+1)=57.27.111=57.26.2.111
=57.26.222 chia hết cho 222
=>ĐPCM
d) 106-57=(2.5)6-5.56=26.56-5.56=(26-5).56=(64-5).56=59.56 chia hết cho 59
=>ĐPCM
\(5^5-5^4+5^3=5^2.5^3-5.5^3+1.5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Chia hết cho 7
=> dpcm
Các câu còn lại tương tự
\(a ) \) \(Ta\) \(có :\) \(5^5 -5^4+5^3\)
\(= 5^3 . ( 5^2 - 5 + 1)\)
\(= 5^3 . 21\)\(⋮\)\(7\)
\(Vậy :\) \(5^5 - 5^4 + 5^3 \) \(⋮\)\(7\)
\(b )\) \(Ta\) \(có : \) \(16^5 + 2\)\(15\)
\(= ( 2^4 )^5 .2\)\(15\)
\(= 2\)\(20\) \(.2\)\(15\)
\(= 2\)\(15\) \(. ( 2 ^5 + 1 )\)
\(= 2\)\(15\) \(.33\)\(⋮\)\(33\)
\(Vậy : \) \(16^ 5 + 2 \)\(15\) \(⋮\)\(33\)
55-54+53=53.(52-51+50)=53.(25-5+1)=53.21=53.3.7 chia hết cho 7
=>ĐPCM
76+75-74=74.(72+71-70)=74.(49+7-1)=74.55=74.5.11 chia hết cho 11
=>ĐPCM
a)76+75+74=74(72+7+1)=74.55
=>76+75+74 chia hết cho 55
b)A= 1+5+52+53+54+....+550
=>5A=5+52+53+54+....+551
=>5A-A=5+52+53+54+....+551-(1+5+52+53+54+....+550)
=>4A=5+52+53+54+....+551-1-5-52-53-54-...-550
=551-1
=>A=(551-1):4
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
ta có : \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7⋮7\)
\(\Rightarrowđpcm\)
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot\left(25-5+1\right)=5^3\cdot21\)
Vì \(21⋮7\Rightarrow5^3\cdot21⋮7\Rightarrow5^5-5^4+5^3⋮7\)
Vậy \(5^5-5^4+5^3⋮7\left(đpcm\right)\)