K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Ta có :

\(21^{30}+39^{21}=\left(21^2\right)^{15}+\left(39^2\right)^{10}.39\)

\(=\left(9.45+36\right)^{15}+\left(33.45+36\right)^{20}.39\)

\(=BS45+36^{15}+BS45+36^{20}.39\)

\(=BS45+36^{15}\left(36^5+19\right)\)

\(36^5+19⋮45\) nên

\(BS45+36^{15}\left(36^5+19\right)=BS45+36^{15}.45a=BS45⋮45\)(đpcm)

Ta có :

\(45^{n+2}-45^{n+1}=45^{n+1}\left(45-1\right)=44.45^{n+1}⋮44\left(đpcm\right)\)

Wish you study well !!

12 tháng 10 2018

Tổng số hạng của đa thức bị chia là: 48 số hạng.

Tổng số hạng của đa thức chia là: 16 số hạng.

Nhóm 16 số hạng liên tiếp với nhau ta được 3 nhóm:

(x47+x46+x45+....+x34+x33)+(x32+x31+x30+...+x17+x16)+(x15+x14+x13+...+x2+x+1)= x33(x15+x14+x13+...+x2+x+1)+x16(x15+x14+x13+...+x2+x+1)+(x15+x14+x13+...+x2+x+1) = (x15+x14+x13+...+x2+x+1)(x33+x16+1) chia hết cho x15+x14+x13+...+x2+x+1

=> x47+x46+x45+....+x34+x33)+(x32+x31+x30+...+x17+x16 chia hết cho x15+x14+x13+...+x2+x+1

12 tháng 8 2016

a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005  => 20062006 - 20062005 chia hết cho 2005.

b) 79m+1 - 79= 79m x 79 - 79m = 79x (79 - 1) = 79m x 78 chia hết cho 78  => 79m+1 - 79 chia hết cho 78.

c) 25+ 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1)  = 512 x 5 x 6 = 512 x 30 chia hết cho 30  => 257 + 513 chia hết cho 30.

d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 5x (64 - 5) = 56 x 49 chia hết cho 49  => 106 - 57 chia hết cho 49.

e) 710 - 79 - 7= 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41  => 710 - 79 - 78 chia hết cho 41.

f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45  => 817 - 279 - 913 chia hết cho 45.

12 tháng 8 2016

Cảm ơn

12 tháng 10 2014

\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)

ta có:

(a+1).a.(a-1) chia hết cho 6

(a+1).(a+3).a+2) chia hết cho 6.

(3 số tự nhiên liên kề thì chia hết cho 6);

suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6

26 tháng 12 2014

a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6

Câu b) tương tự.

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6