Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)
\(=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)\)
\(=3^n.10-2^n.15\)
\(=3^{n-1}.30-2^{n-1}.30\)
\(=30\left(3^{n-1}-2^{n-1}\right)⋮30\left(đpcm\right)\)
Ta có 3n+2-2n+4+3n+2n=3n.9-2n.16+3n+2n
=3n.(9+1)-2n..(16-1)
=3n.10-2n.15
=3n-1.3.10-2n-1.2.15
=3n-1.30-2n-1.30
mặt khác vì n nguyên dương nên n-1 là số tự nhiên
=> 3n-1.30-2n-1.30 chia hết cho 30 hay ta có điều phải chứng minh.
ta có: 3^(n+2) -2^(n+4) +3^n + 2^n = 3^n.(3^2+1) - 2^n.(1- 2^4)
= 3^n.10 + 2^n . (-15)
= 3^(n-1).3.10 + 2^(n-1) . (-30)
= 3^(n-1) .30 - 2^(n-1) .30
= 30.[3^(n-1) - 2^(n-1)] chia hết cho 30 ( do n là số nguyên dương ) (ĐPCM)
Giải:
Ta có:
\(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=3^n.9-2^n.16+3^n+2^n\)
\(=3^n\left(9+1\right)-2^n\left(16-1\right)\)
\(=3^n.10+2^n.15\)
\(=3^{n-1}.3.10-2^{n-1}.2.15\)
\(=3^{n-1}.30-2^{n-1}.30\)
\(=30\left(3^{n-1}-2^{n-1}\right)\)
Mặt khác \(n\) là số nguyên dương nên \(n-1\) là số tự nhiên
\(\Rightarrow30\left(3^{n-1}-2^{n-1}\right)⋮30\)
Hay \(3^{n+2}-2^{n+4}+3^n+2^n⋮30\forall n\) nguyên dương (Đpcm)
=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)
=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)- \(2^n\)
=10 .\(3^n\)-5.\(2^n\)
=10.\(3^n\)-5.2.\(2^{n-1}\)
=10 .(\(3^n\)-\(2^n\) )
=> chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)
\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)
\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)
\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)
k!
4n+2 -3n+2 - 4n - 3n
= 4n+2 - 4n - 3n+2 - 3n
= 4n ( 42 - 1 ) - 3n ( 32 + 1 )
= 4n .15 - 3n.10
= 4n-1.4.15 - 3n-1.3.10
= 4n-1.60 - 3n-1.30
= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^{10}.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\)chia hết cho 10
Đặt D=3^n+2 - 2^n+2 + 3^n + 2^n
=(3^n+2 + 3^n) - (2^n+2 + 2^n)
=(3^n . 3^2 + 3^n) - (2^n . 2^2 + 2 ^n)
=3^n . (3^2 + 1) - 2^n . (2^2 + 1)
=3^n . 10 - 2 ^n .5
=3^n .10 - 2^n-1 .10
=(3^n - 2^n-1) . 10 chia hết cho 10 (ĐPCM)
Chúc bạn học tốt!
A=9.3^n+3^n+2^n-16.2^n
.=10.3^n-3.5.2^n=10.3^n-3.10.2^(n-1)=30[3^(n-1)-2^(n-1)]
haha đùa tí