Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mik giúp pạn nhé:
Ta có:
\(555^2\equiv5\)(mod 10)
\(555^3\equiv5\)( mod 10)
\(555^5=555^2.555^3\equiv5.5\equiv5\)(mod 10)
---> \(555^{777}\equiv5\)(mod 10)
Suy ra:
\(333^{555^{777}}\)đồng dư với \(333^5\)
Do \(333^5=3332.3333\equiv3\)(mod 10)
Vậy chữ số tận cùng của \(333^{555^{777}}\)là 3 (1)
Làm tương tự với \(777^{555^{333}}\)có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra \(333^{555^{777}}+777^{555^{333}}\)có chữ số tận cùng là 0
Vậy \(333^{555^{777}}+777^{555^{333}}\)chia hết cho 10 (đpcm)
b)
Chứng minh các số mũ đều có số dư bằng 33 khi chia cho 44
Đặt: {555777=4k1+3555333=4k2+3{555777=4k1+3555333=4k2+3 ta có:
333555777+777555333=3334k1+3+7774k2+3333555777+777555333=3334k1+3+7774k2+3
=3333.(3334)k1+7773.(7774)k2=3333.(3334)k1+7773.(7774)k2
=(...7¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)=(...7¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯)=(...7¯).(...1¯)+(...3¯).(...1¯)=(...7¯)+(...3¯)
=(...0¯¯¯¯¯¯¯¯)⇒333555777+777555333=(...0¯)⇒333555777+777555333 có chữ số tận cùng là 00
⇔333555777+777555333⋮10⇔333555777+777555333⋮10 (Đpcm)
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Ta có:
5552≡5 (mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
Ta thấy 555 chia 4 dư 3 nên\(555^{777}\)và \(555^{333}\)chia 4 dư 3
Đặt\(555^{777}=4q_1+3;555^{333}=4q_2+3\)
Khi đó \(333^{555^{777}}+777^{555^{333}}=333^{4q_1+3}+777^{4q_2+3}\)
Ta thấy \(333^4\)tận cùng bằng 1 nên \(\left(333^4\right)^{q_1}\)tận cùng bằng 1 mà \(333^3\)tận cùng bằng 7 nên \(\left(333^4\right)^{q_1}.333^3\)tận cùng bằng 7 (1)
Ta thấy \(777^4\)tận cùng bằng nên \(\left(777^4\right)^{q_2}\)tận cùng bằng 1 mà \(777^3\)tận cùng bằng 3 nên \(\left(777^4\right)^{q_1}.777^3\)tận cùng bằng 3 (2)
Từ (1) và (2) suy ra \(\left(333^4\right)^{q_1}.333^3+\left(777^4\right)^{q_2}.777^3\)tận cùng bằng 0 hay \(333^{555^{777}}+777^{555^{333}}\)tận cùng bằng 0 suy ra \(333^{555^{777}}+777^{555^{333}}⋮10\)
Ta có
333 chia hết cho 37
=> 333555 chia hết cho 37
Chứng minh tương tự
=> 555333 chia hết cho 37
Vậy 333555 + 555333 chia hết cho 37