K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

6n + 333...3 (n chữ số 3)

= 9n + 333...3 (n chữ số 3) - 3n

= 9n + 3.(111...1 - n)

           n chữ số 1

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà số 111...1 (n chữ số 1) có tổng các chữ số là n

=> 111...1 - n chia hết cho 3

   n chữ số 1

=> 3.(111...1 - n) chia hết cho 9

      n chữ số 1

Mà 9n chia hết cho 9 => 6n + 333...3 (n chữ số 3) chia hết cho 9 (đpcm)

5 tháng 8 2016

6n+333...33 (n chữ số 3)

Tổng các chữ số của 333..33 là n.3

Tổng các chữ số của 6n là n.6

=>6n+3n=n(3+6)=n.9 chia hết cho 9

Vậy 6n +333...33 chia hết 9

4 tháng 11 2016

Câu 3 phần b dấu + ở cuối là dấu = nha các bạn

15 tháng 12 2016

Bài 1: a) => tập hợp a = { 108;117 }

b) => tập hợp b = { 90;100;110 }

29 tháng 3 2016

Ta có 555...5(2n chữ số)=55.10^(2n-2)+55.10^(2n-4)+...55.10

Mà mỗi số hạng của tổng trên dếu chia hết cho 11

=>5555...5(2n chữ số) chia hết cho 11 (đpcm)

Ta có những số chia hết cho 125 thì có 3 chữ số tận cùng là số chia hết cho 125

Mà 555 không chia hết cho 125

=>555...5(2n chữ số) không chia hết cho 125(đpcm)

29 tháng 3 2016

Ta có: 125=25.5 => 555..5 phải phân tích ta thành tích 2 số 1 số chia 5 cho 5, số còn là chia hết cho 25. Ta có 5555...5= 111...1. Mà 111...1 có tận cùng là 11 k chia hết cho 25 => 555...5 k chia hết cho 25. Ta có tổng các chữ số hàng lẻ trừ tổng các chữ số hằng chẵn chia hết cho 11 thì số đó chia hết cho 11 mà 555...555 có 2n chữ số => số chữ số hàng lẻ = số chữ số hàng chẵn => hiệu =0 chia hết cho 11( đpcm)

10 tháng 11 2016

a) S = 5 + 52 + 53 + ... + 5100

=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 ) 

=> S = 5 . 6 + 53 . 6 + ... + 599 . 6

=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6

=> S chia hết cho 6

b) S1 = 2 + 22 + 23 + ... + 2100

=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )

=> S1 = 2 . 31 + ... + 296 . 31

=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31

=> S1 chia hết cho 31

c) S2 = 165 + 215

=> S2 = ( 24 )5 + 215

=> S2 = 220 + 215

=> S2 = 220( 1 + 25 )

=> S2 = 220 . 33 chia hết cho 33

=> S2 chia hết cho 33

15 tháng 10 2018

dài quá 

5 tháng 1 2015
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
  •  
20 tháng 10 2015

10^n +18n - 1=10^n-1+18n=99..9(n chữ số 9)+18n 
=9(11...1(n chữ số 9)+2n) 
Xét 11...1(n chữ số 9)+2n=11...1- n+3n 
Dễ thấy tổng các chữ số của 11..1(n chữ số 1) là n 
=>11...1- n chia hết cho 3 
=>11...1- n+3n chia hết cho 3 
=>10^n +18n - 1 chia het cho 27

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

$\underbrace{\overline{111...1}}_{n}$ có tổng các chữ số là $n$

$\Rightarrow \overline{111....1}-n\vdots 9$

$\Rightarrow \overline{111....1}-n+9n\vdots 9$

$\Rightarrow \overline{1111...1}+8n\vdots 9$

Hay $A\vdots 9$

14 tháng 9 2024

cho các số 1,3,4,7,8.từ năm chữ số này có thể lập được tát cả bao nhiêu số chẵn có năm chữ số khác nhau sô