K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

\(3^{2n}-9=\left(3^2\right)^n-9=9^n-9\)

+Dễ thấy hiệu trên chia hết cho 9

+Ta có: 9 đồng dư với 1 (mod8)

=>9n đồng dư với 1 (mod8)

=>9n-9 dồng dư với -8 (mod8)

=>9n-9 đồng dư với 0 (mod8)

=>9n-9 chia hết cho 8

Vì (8;9)=1=>32n-9 chia hết cho 72

26 tháng 10 2016

A=9.(3^n-1)

cần cm 3^n-1 chia hết cho 8 mọi n

n=1 A=9.2 đế sai

1 tháng 6 2018

Ta có :

32n - 9 = 9n - 9 nên 32n - 9  \(⋮\)  9       ( 1 )

32n - 9 = ( 3n )2 - 1 - 8 = ( 3n - 1 ) ( 3n + 1 ) - 8 nên 32n - 9 \(⋮\)8      ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)32n - 9 \(⋮\)72 

4 tháng 3 2018

3^2n-9=(3^2)^n-9=9^n-9

Ta có:9 đồng dư với 1(mod 8)

\(\Rightarrow\)9^n đồng dư với 1(mod 8)

\(\Rightarrow\)9^n-9 đồng dư với -8(mod 8)

\(\Rightarrow\)9^n-9\(⋮\)8

Vậy 3^2n-9 chia hết cho 72 với mọi số nguyên dương n

4 tháng 3 2018

32n - 9 = (32) - 9 = 9n - 9

+) Thấy dấu hiệu chia hết cho 9

+) Ta có: 9 đồng dư với 1 (mod 8)

=> 9n đồng dư với 1 (mod 8)

=> 9- 9 đồng dư với -8 (mod 8)

=> 9- 9 đồng dư với 0 (mod 8)

=> 9- 9 chia hết cho 8

=> (8; 9) = 1 => 32n - 9 chia hết cho 72.

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

25 tháng 2 2016

ai giúp mk vs

18 tháng 10 2021

\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)

\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)

Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

27 tháng 12 2018

Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2  – 3n – 2 n 2  – 2n = - 5n

Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .