K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?

5 tháng 10 2015

Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z) 
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3. 
Một số chia cho 3 thì có 3 trường hợp: 
- a chia hết cho 3 
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3. 
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3. 
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)

Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)

Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6

10 tháng 5 2016

a)Goi day so la a; a+1; a+2; ...; a+n

Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n

Goi so do la a+k (k thuoc N va k>=1 va k <=n)

=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n

b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6

11 tháng 10 2023

Gọi a, a + 1, a + 2 lần lượt là ba số tự nhiên liên tiếp (a ∈ ℕ)

Trong ba số tự nhiên liên tiếp chắc chắn có 1 số chẵn nên tích của chúng chia hết cho 2 (1)

Khi lấy a chia cho 3 thì số dư có thể là 0; 1; 2

*) Khi số dư là 0 thì a ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (2)

*) Khi số dư là 1, đặt a = 3k+ 1 (k ∈ ℕ)

⇒ a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (3)

*) Khi số dư là 2, đặt = 3k + 2 (k ∈ ℕ)

⇒ a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (4)

Từ (2), (3), (4) ⇒ a(a + 1)(a + 2) ⋮ 3 (5)

Từ (1) và (5) ⇒ tích của ba số tự nhiên liên tiếp chia hết cho 2 và 3

23 tháng 6 2016

Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ

Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)

Tích 3 số trên là: (2k+2).(2k+3).(2k+4)

Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)

Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24

=> đpcm

12 tháng 6 2018

1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)

\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)

Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)

Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)

2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)

Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6 

Mà 24 chia hết cho 6

=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho

3/  giống bài 2 

4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6

12 tháng 10 2018

Gọi 3 số tự nhiên liên tiếp là a, a + 1, a + 2 (a \(\in\) N). Ta có tổng các bình phương của ba số đó là:

a2 + (a + 1)2 + (a + 2)2

= a2 + (a2 + 2a + 1) + (a2 + 4a + 4)

= 3a2 + 6a + 5

= 3a(a + 2) + 5

Đến đây thì dễ